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Chapter 5          

Principles of Unsteady - State Heat Transfer 

In this chapter, we will study chemical processes where heat transfer is taking place due to a 

temperature difference within the system which is changing with time. The following problem 

modules illustrate different examples where unsteady – state heat transfer processes are occurring in 

fuel cell vehicles and in the processes for producing fuel for fuel cells. 

5.2-1 Cooling of a Cylindrical Solid – Oxide Fuel Cell 

5.2-2 Total Amount of Heat in Cooling of a Solid – Oxide Fuel Cell 

5.3-2 Heat Conduction in a Fuel Cell Stack 

5.3-3 Transient Heat Conduction in a Cylindrical Solid – Oxide Fuel Cell 

5.3-4 Two – Dimensional Conduction in a Cylindrical Solid – Oxide Fuel Cell 

5.4-1 Unsteady – State Conduction and the Schmidt Numerical Method 

5.4-3 Unsteady – State Conduction with Convective Boundary Condition 
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Example 5.2-1: Cooling of a Cylindrical Solid – Oxide Fuel Cell 

A cylindrical solid – oxide fuel cell has an inner radius of 3.1 mm, outer radius of 3.9 mm and a 

length of 0.2 m. The fuel cell initially at a uniform temperature of 873.15 K enters a medium whose 

temperature is 60°C. Determine how much time in minutes is required for the fuel cell to be cooled 

down to a temperature of 340.23 K if the convective coefficient of the medium is 
2

W
12

m K⋅
. 

The properties of the membrane electrode assembly for this type of fuel cell are estimated by Xue et 

al. [1] to be: 

 
3

kg
6337.3

m
ρ =  p

J
C 594.3

kg K
=

⋅
 

W
k 2.53

m K
=

⋅
 

Strategy 

This problem can be solved using the simplified equations for systems with negligible internal 

resistance. 

Solution 

The equation for the dimensionless temperature as a function of time is given by: 

 
p 1

0

h
t

C xT T
e

T T

 
 
 

∞  

∞

−
ρ−

=
−

 

In this equation: 

 T∞ = Temperature of the medium 

 0T = Initial temperature of the fuel cell 

 x1 = Characteristic dimension of the body 

However, this equation is only applicable when the Biot number NBi is less than 0.1. Hence, we need 

to obtain this dimensionless number first, defined as: 

 BiN _________=  

For a cylindrical object, the characteristic length is calculated as follows: 

 1

r
x

2
=  

1. Xue, X., Tang, J., Sammes, N., Du, Y., Journal of Power Sources, 142, 211 −222 (2005) 
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In this case, since the fuel cell is a hollow cylinder, the characteristic dimension will be obtained as 

shown below: 

 

( )
o i

1

1 m
3.9 mm 3.1 mm

r r 1000 mm
x _____________ m

2 2

 
−  −  = = =  

Substituting this parameter into the definition of Biot number, we get: 

( )2

Bi

W
12 _____________ m

m K
N _____________

W
2.53

m K

 
 

⋅ = =
 
 

⋅ 

 

Since this value is less than 0.1, we can proceed to enter the corresponding values into the equation 

for the dimensionless temperature, to yield: 

 
( )

2

3

W
12

m K

kgJ
594.3 6337.3 ______________ m

kg K m

t

340.23 K _________  K
e

_________  K _________ K

 
 
 
 
          

⋅

⋅

−

−
=

−
 

Solving for the time, we have: 

 
( )1

1 340.23 K _________  K
t ln

_________  K _________ K_______________ s
−

 −
= −  

− 
 

_________
t _________ s

_________

 
=  

 
 

t _________  min=  
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Example 5.2-2: Total Amount of Heat in Cooling of a Solid – Oxide Fuel Cell  

Determine the total amount of heat removed from the fuel cell in Problem 5.2-1 after 5 minutes. The 

characteristic length of the fuel cell is 44 10 m−× . 

Strategy 

The equation for the total amount of heat in J can be used to solve this problem. 

Solution 

The equation for the total amount of heat is given by: 

p 1

p 0

h
t

C x
Q C V(T T ) 1 e

 
 
 
 

∞

−
ρ

 
 = ρ − −
 
  

 

The volume of the cylindrical fuel cell is calculated as follows: 

 ( )V ______ ______ L= π −  

 [ ]V _______________ _______________ 0.2 m= π −  

 6 3V 3.52 10 m−= ×  

Substituting the calculated volume and the rest of the values into the equation for the total amount of 

heat transferred, yields: 

( )
( )

2

4
3

3

3

W
12

m K ____ s
kgJ

594.3 6337.3 4 10 m
kg K mJ kg

Q 594.3 6337.3 __________ m (873.15 K 333.15 K) 1 e
kg K m

−

 
 
 
  
     

⋅−

×
⋅

 
 
   

= − −   
⋅     

 
  

Q ____________  J=  
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Example 5.3-2: Heat Conduction in a Fuel Cell Stack  

A stack of 220 fuel cells is initially at a temperature of 353.15 K. This stack enters a room at a 

temperature of 266.48 K. Assuming all the sides but the front face of the stack are insulated, 

determine the temperature of the 60
th

 fuel cell after 90 minutes. The thickness of the bipolar plates in 

this fuel cell stack is 2 mm and it is much thicker than the membrane electrode assembly. The heat 

transfer coefficient of the air in this room is 
2

W
91

m K⋅
 

The properties of the bipolar plates in this fuel cell stack are given below [2]: 

 
3

kg
1632

m
ρ =   p

J
C 1414

kg K
=

⋅
 

W
k 24.42

m K
=

⋅
 

 A schematic of this fuel cell stack is shown in the following figure: 

 

 

 

 

 

 

 

Strategy 

The temperature at a point inside the fuel cell stack can be obtained from the charts for unsteady – 

state heat conduction of a slab. 

Solution 

To use Figure 5.3-5 of Geankoplis to determine the unsteady – state heat conduction in a flat plate, 

we need to find the parameters X, m and n, defined as: 

 X ________=  
1

k
m

hx
=  n __________=  

 

 

2. King, J.A., Lopez Gaxiola, D., Johnson, B.A., Keith, J.M., Journal of Composite Materials, 44 (7), 839 – 855 (2010). 

x 

x1 

ncell = 1 

T = 266.48 K 

The sides and back face 

of the fuel cell stack are 

insulated 

ncell = 220 

ncell = 60 
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The characteristic length x1 in these equations corresponds to the distance from the front face to the 

center of the fuel cell stack, obtained by multiplying the number of fuel cells by the thickness of a 

bipolar plate, and dividing it by 2. Thus, 

 
( )

1

_______  m 220
x

2
=  

 
1

x __________  m=  

The parameter α is the diffusivity of the fuel cell stack defined as: 

 
k

______
α =  

Substituting the properties of the bipolar plates into this equation, we get: 

 
2

3

W
24.42

mm K _______________
skg J

_________ _________
m kg K

⋅α = =
 
 

⋅ 

 

To determine the value of n, we need to know the distance at which the 60
th

 fuel cell is located from 

the center of the stack. This distance can be calculated by multiplying the thickness of a single 

bipolar plate by (110-60) which is the number of fuel cells from the center. 

 ( )x 110 60 (_________  m) _________  m= − =  

Now we can calculate the three values required to use Figure 5.3-5, as shown in the following steps: 

 

( )

( )

2

2

m 60 s
_______________ 90 min

s 1 min
X _________

_________  m

   
   

  = =   

 

( )2

W
24.42

m Km 1.22
W

91 _________  m
m K

⋅= =

⋅

 

_________  m
n 0.45

_________  m
= =  

From Figure 5.3-5 we can read a value for a dimensionless temperature Y = _______. This value can 

be used to solve for the temperature in the 60
th

 fuel cell as follows: 



Supplemental Material for Transport Process and Separation Process Principles 

Daniel López Gaxiola         7     Student View 

Jason M. Keith 

 1

1 0

T T
Y _________

T T

−
= =

−
 

where: 

 T1 = Temperature of the cooling medium 

 T0 = Initial temperature of the fuel cell stack. 

We can enter the corresponding temperatures and solve for the temperature T to get: 

 ( )1T T _________ _______ _______= − −  

 ( )T 266.48 K _________ 266.48 K _________ K= − −  

 T _________  K=  
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Example 5.3-3: Transient Heat Conduction in a Cylindrical Solid – Oxide Fuel Cell 

A cylindrical solid – oxide fuel cell with a diameter of 3.9 mm and a length of 0.2 m is initially at a 

temperature of 1150 K. The fuel cell is shut down in a room where the air is at a temperature of 303 

K. Calculate the temperature at the center of the fuel cell after 5 minutes, assuming it is insulated on 

the flat ends. The heat transfer coefficient of the air is 
2

W
10

m K⋅
. The thermal conductivity and 

diffusivity of the fuel cell are 
W

2.53
m K⋅

and 
2

7 m
6.72 10

s

−× , respectively. 

Strategy 

The solution to this problem can be found by using the charts for unsteady – state heat conduction in 

a cylinder. 

Solution 

Since heat is only being transferred through the walls, the fuel cell can be considered as a long 

cylinder. The parameters n, m and X required to determine the dimensionless temperature Y from 

Figure 5.3-8 are calculated as shown in the following steps: 

At the center of the cylinder, x = 0. Thus, the value of n will also be equal to zero: 

1

x 0 m
n

x ____________  m
= =  

n 0=  

To calculate the value of X, we need to substitute the diffusivity, radius of the fuel cell and the time 

elapsed, as shown below: 

2

1

t
X

x

α
=  

( )

( )

2

2

m 60 s
_____________ ___  min

s 1 min
X _________

_____________  m

   
   

  = =  

Finally, we can determine the parameter m: 

1

k
m

hx
=   
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( )3

2

W
_______

m Km ________
W

_______ 3.9 10  m
m K

−

⋅= =

×
⋅

 

For these values, the corresponding Y from Figure 5.3-8 will be equal to ______. Now we can solve 

for the temperature at the center of the fuel cell from the definition of the dimensionless temperature 

Y: 

 1
T T

Y ______
_________

−
= =  

 
1

T T __________________= −  

where: 

 T1 = Temperature of cooling medium 

 T0 = Initial temperature of the fuel cell 

Substituting the temperature values in this equation, we get: 

 ( )T 303 K ______ 303 K ________  K= − −  

 T _________  K=  
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Example 5.3-4: Two – Dimensional Conduction in a Cylindrical Solid – Oxide Fuel 
Cell 

Determine the temperature at the center of the solid – oxide fuel cell from Example 5.3-3 now 

considering heat conduction also occurring through the ends of the cylinder. What does this result 

indicate? 

Strategy 

The procedure to solve this problem consists of using the charts for unsteady – state heat transfer in a 

cylinder for both radial and axial directions. 

Solution 

We need to calculate the required dimensionless quantities X, m and n for both radial and axial 

directions. For the radial direction, these will be given by: 

radial

1

x ______  m
n

x _____________  m
= =  

radial
n ____=  

radial

1

k
m

hx
=        

 

( )
radial

3

2

W
________

m Km _______
W

_____ 3.9 10  m
m K

−

⋅= =

×
⋅

 

radial 2

1

t
X

x

α
=  

( )

( )

2

radial 2

m 60 s
______________ 5 min

s 1 min
X ________

______________  m

   
   

  = =  

These values will yield a dimensionless temperature Yradial = ______ 

For heat conduction in the axial direction, we need to calculate the parameters n, m and X and locate 

them in Figure 5.3-6, applicable for two parallel planes. Thus, 

axial

1

y 0 m
n

y 0.1 m
= =  

axial
n 0=  
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axial

1

k
m

hy
=        

 

( )
axial

2

W
______

m Km ______
W

______ ______  m
m K

⋅= =

⋅

 

axial 2

1

t
X

x

α
=  

( ) ( )

( )

2

axial 2

m
_____________ ______ min ______

s
X ______

______ m

 
 
 = =  

Locating these three parameters in Figure 5.3-6 gives a value of Yaxial = ___. 

Now that we have both Y values for both directions, we can obtain a Y for the overall heat transfer 

process as follows: 

 
axial radial

Y  Y Y ________= =  

Now we can solve for the temperature at the center of the cylinder to get: 

 1

1 0

T T
Y __________

T T

−
= =

−
 

 
1

T T _________________= −  

 ( )T ______  K ______ ____________________= −  

 T _________ K=  

Conclusion:  
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Example 5.4-1: Unsteady – State Conduction and the Schmidt Numerical Method 

A proton – exchange membrane fuel cell stack has a thickness of 0.3 m and is initially at a uniform 

temperature of 60°C. The front face of the fuel cell stack suddenly exposed to an environmental 

temperature of -6.67°C. The bulk thermal diffusivity of the fuel cell stack is 
2

6 m
8.69 10

s

−× . 

Assuming the convective resistance is negligible and that the back face of the stack is insulated, 

determine the temperature profile after 24 minutes using the Schmidt numerical method with M = 2 

and dividing the fuel cell stack into slices with a thickness of 0.05 m. Follow the special procedure 

for the first time increment. 

The next figure illustrates the conditions in this cooling process: 

  

 

 

 

 

 

 

Strategy 

The equations we need to use to determine the temperature profile will depend on the boundary 

conditions. 

Solution 

The number of time steps to use in this problem will be determined from the definition of the 

parameter M: 

 
2

( x)
M

t

∆
=

α∆
 

Solving for the time increment t∆ and substituting the corresponding values into this equation, 

yields: 

 
2 2

2

( x) (______ m)
t

M m
2 ____________

s

∆
∆ = =

α  
 
 

 

Insulated Face 

T0 = 60 °C 

Ta = -6.67 °C 
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 t _________ s∆ =  

The number of time steps needed for this t∆ is given by: 

 
( )

time steps

(______  min) ______t
n 10

t ________ s
= = ≈

∆
 

The front surface of the fuel cell stack corresponds to n =1. In this point, the temperature 
1 a
T  used 

for the first time increment is given by: 

 a 0 1
1 a

T T
T

2

+
=  

where: 

 
0 1
T  = Initial temperature at point 1. 

 
a

T = Temperature of the environment = -6.67°C 

Since there is no convective heat resistance at the interface, for the remaining time increments: 

 
1 a

T T=  

The general equation for determining the temperature for the slabs n = 2 to 6 is given below: 

 t n 1 t n 1
t t n

T T
T

2

− +
+∆

+
=  

We need an additional equation for the insulated face. This is the point where n = 7 and its 

corresponding equation is given by: 

 
( ) 7 t 6t

t t 7

M 2 T 2 T
T

M
+∆

− +
=  

Now we can proceed to calculate the temperatures for the first time increment. Thus, for n = 1, 

 a 0 1
t+ t 1

T T 6.67 C _____°C
T ______ C

2 2
∆

+ − ° +
= = = °  

Since the problem indicates we should use the special procedure for the first time increment, this 

temperature value we just obtained is equal to the ambient temperature at the first time increment: 

 
t+ t 1 1 a

T T∆ =  

For n = 2: 
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 t 1 t 3
t+ t 2

T T
T

2
∆

+
=  

The special procedure used at n = 1 for the first time increment also affects this equation: instead of 

using the temperature of -6.67°C we will use 
1 a
T . Hence, 

 1 a t 3
t+ t 2

T T _________ °C ______ °C
T ________ C

2 2
∆

+ +
= = = °  

The following four slabs corresponding to n = 3 to 6 can be calculated with the general equation for 

n = 2 to 6, given in previous steps. Substituting the corresponding temperatures into this equation 

yields:  

 t 2 t 4
t t 3

T T 60 C 60 C
T 60 C

2 2
+∆

+ ° + °
= = = °  

 t 3 t 5
t t 4

T T 60 C 60 C
T 60 C

2 2
+∆

+ ° + °
= = = °  

 t 4 t 6
t t 5

T T 60 C 60 C
T 60 C

2 2
+∆

+ ° + °
= = = °  

 t 5 t 7
t t 6

T T 60 C 60 C
T 60 C

2 2
+∆

+ ° + °
= = = °  

For n = 7, we use the equation for the insulated face: 

 
( ) 7 t 6t

t t 7 t 6

2 2 T 2 T
T T 60 C

2
+∆

− +
= = = °  

Now we can proceed to calculate the temperatures from the second to the tenth time increments, as 

shown in the following steps: 

For 2∆t: 

t+2 t 1 a
T T C______∆ = = °  

t+ t 1 t+ t 3
t+2 t 2

T T ______ 60°C
T C

2 2
______∆ ∆

∆

+ +
= = = °  

t+ t 2 t+ t 4
t 2 t 3

T T ______ C 60 C
T C

2 2
______∆ ∆

+ ∆

+ ° + °
= = = °  

4

t+ t 3 t+ t 5
t 2 t

T T ______ C 60 C
T C

2 2
______∆ ∆

+ ∆

+ ° + °
= = = °  
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t+ t 4 t+ t 6
t 2 t 5

T T ______ C 60 C
T C

2 2
______∆ ∆

+ ∆

+ ° + °
= = = °  

t+ t 5 t+ t 7
t 2 t 6

T T ______ C 60 C
T C

2 2
______∆ ∆

+ ∆

+ ° + °
= = = °  

t 2 t 7 t t 6
T T ______ C+ ∆ +∆= = °  

For 3∆t: 

t+3 t 1 a
T T 6.67 C∆ = = − °  

t+2 t 1 t+2 t 3
t+3 t 2

T T 6.67°C ______°C
T C

2 2
______∆ ∆

∆

+ − +
= = = °  

t+2 t 2 t+2 t 4
t 3 t 3

T T _______ C _______ C
T C

2 2
_______∆ ∆

+ ∆

+ ° + °
= = = °  

4

t+2 t 3 t+2 t 5
t 3 t

T T _______ C _______ C
T C

2 2
_______∆ ∆

+ ∆

+ ° + °
= = = °  

t+2 t 4 t+2 t 6
t 3 t 5

T T _______ C _______ C
T C

2 2
_______∆ ∆

+ ∆

+ ° + °
= = = °  

t+2 t 5 t+2 t 7
t 3 t 6

T T _______ C _______ C
T C

2 2
_______∆ ∆

+ ∆

+ ° + °
= = = °  

t 3 t 7 t 2 t 6
T T ____ C+ ∆ + ∆= = °  
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We can continue to repeat this procedure up to 10∆T. The solutions for the all the temperatures (in 

°C) are given in the following table: 

 n 

 1 2 3 4 5 6 7 

t 60 60 60 ______ 60 ______ 60 

t+∆t ______ ______ 60 60 ______ 60 ______ 

t+2∆t -6.67 ______ ______ 60 ______ ______ ______ 

t+3∆t ______ 22.50 ______ ______ 60 ______ 60 

t+4∆t -6.67 ______ 39.17 ______ ______ 60 ______ 

t+5∆t -6.67 ______ ______ 48.54 ______ ______ ______ 

t+6∆t -6.67 14.16 ______ ______ 53.75 ______ 58.96 

t+7∆t -6.67 ______ 29.79 ______ ______ 56.35 ______ 

t+8∆t -6.67 ______ ______ 40.73 ______ ______ ______ 

t+9∆t -6.67 10.65 ______ ______ 47.76 ______ 54.79 

t+10∆t -6.67 ______ 24.74 ______ ______ 51.28 ______ 

 

We can plot these temperature results to observe the change in temperature within the fuel cell stack: 

 

-10
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Example 5.4-3: Unsteady – State Conduction with Convective Boundary Condition 

Determine the temperature profile for the same fuel cell stack as in Example 5.4-1, now with a 

convective coefficient of 
2

W
13

m K⋅
. The bulk thermal conductivity of the fuel cell stack is 

W
20

m K⋅
. 

Use a value of M = 4. 

 

 

 

 

 

 

 

Strategy 

In this problem we need to use Schmidt numerical method depending on the boundary conditions.  

Solution 

Before we start applying Schmidt method, we need to determine the number of time increments we 

need to use. From the definition of the parameter M, we can solve for the time increment t∆ , as 

shown in the following steps: 

 
2

( x)
M

t

∆
=

α∆
 

 

( )

2 2

2
6

( x) (0.05 m)
t ________ s

M m
8.69 10 4

s

−

∆
∆ = = =

α  
× 

 

 

The number of time steps needed for this t∆ is given by: 

 
time  steps

60 s
(______  min)

t 1 min
n ______

t 71.92s

 
 
 = = ≈

∆
 

As stated in Section 5.4B of Geankoplis, when the value of M is greater than 3, the value of the 

environmental temperature Ta will be the same for all time increments. Therefore, 

Insulated Face 

T0 = 60 °C 

Ta = -6.67 °C 

2

W
h 13

m K
=

⋅
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a

T 6.67 C= − °  

For the node n = 1, corresponding to the front face of the fuel cell stack, the temperature can be 

calculated using Equation 5.4-7 of Geankoplis: 

 [ ]{ }t t 1 t a 1 t 2t

1
T 2N T M (2N 2) T 2 T

M
+∆ = + − + +  

The value of N is a function of the convective heat transfer coefficient and the thermal conductivity 

of the fuel cell, described by the following equation:  

 
h x

N
k

∆
=  

Entering the corresponding values into this equation, yields: 

 
( )2

W
______ ______  m

m KN _________
W

20
m K

⋅= =

⋅

 

In order to use Equation 5.4-7, the value of M must satisfy the following constraint: 

 M 2N 2≥ +  

Substituting numeric quantities into this constraint, we get: 

 4 2(0.0325) 2≥ +  

 4 ______≥  

Hence, we can use Equation 5.4-7. From this equation, we can find the temperature 
t t 1

T+∆  to be: 

 ( )( ) [ ]( ){ }t t 1

1
T 2 ________ 6.67 C 4 (________) 60 C 2(60 C)

4
+∆ = − ° + − ° + °  

t t 1
T ________ C+∆ = °  

For the points at n = 2, 3, 4, 5, 6, we use Equation 5.4-2: 

 ( )t t n t n 1 n t n 1t

1
T T M 2 T T

M
+∆ + −

 = + − +   

By entering the value of M into this equation, we can get a general equation for 
t t n

T+∆ : 

 
t t n

T ____________________________________+∆ =  
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Now we need an equation for the insulated boundary at n = 7, which is Equation 5.4-10 of 

Geankoplis: 

 
( ) 7 t 6t

t t 7

M 2 T 2 T
T

M
+∆

− +
=  

 t 7 t 6
t t 7

T T
T

_____
+∆

+
=  

We can now proceed to determine the temperatures for n = 2 to 7 for the first time increment. Thus, 

 ( )t t 2 t 3 t 1 t 2T 0.25 T T 0.5 T+∆ = + +  

 ( ) ( )t t 2T 0.25 ______ C 60 C 0.5 ______ C ______ C+∆ = ° + ° + ° = °  

 ( )t t 3 t 4 t 2 t 3T 0.25 T T 0.5 T+∆ = + +  

 ( ) ( )t t 3T 0.25 ______ C 60 C 0.5 ______ C ______ C+∆ = ° + ° + ° = °  

 ( )t t 4 t 5 t 3 t 4T 0.25 T T 0.5 T+∆ = + +  

 ( ) ( )t t 4T 0.25 ______ C 60 C 0.5 ______ C ______ C+∆ = ° + ° + ° = °  

 ( )t t 5 t 6 t 4 t 5T 0.25 T T 0.5 T+∆ = + +  

 ( ) ( )t t 5T 0.25 ______ C 60 C 0.5 ______ C ______ C+∆ = ° + ° + ° = °  

 ( )t t 6 t 7 t 5 t 6T 0.25 T T 0.5 T+∆ = + +  

 ( ) ( )t t 6T 0.25 ______ C 60 C 0.5 ______ C ______ C+∆ = ° + ° + ° = °  

t 7 t 6
t t 7

T T
T

2
+∆

+
=  

( ) ( )
t t 7

____ C ____ C
T ____ C

2
+∆

° + °
= = °  

For 2∆t: 

 [ ]t 2 t 1 t t a t t 1 t t 2

1
T 0.065 T _______ T 2 T

4
+ ∆ +∆ +∆ +∆= + +  
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( ) ( )t 2 t 1 t t t t t t

1
T 0.065 (_______ C) _______ _______ C 2 60 C _______ C

4
+ ∆ +∆ +∆ +∆= ° + ° + ° = °    

 ( )t 2 t 2 t t 3 t t 1 t t 2T 0.25 T T 0.5 T+ ∆ +∆ +∆ +∆= + +  

 ( ) ( )t 2 t 2T 0.25 _____ C 58.92 C 0.5 60 C 59.73 C+ ∆ = ° + ° + ° = °  

 ( )t 2 t 3 t t 4 t t 2 t t 3T 0.25 T T 0.5 T+ ∆ +∆ +∆ +∆= + +  

 ( ) ( )t 2 t 3T 0.25 ____ C 60 C 0.5 ____ C ____ C+ ∆ = ° + ° + ° = °  

 ( )t 2 t 4 t t 5 t t 3 t t 4T 0.25 T T 0.5 T+ ∆ +∆ +∆ +∆= + +  

 ( ) ( )t 2 t 4T 0.25 ____ C ____ C 0.5 ____ C ____ C+ ∆ = ° + ° + ° = °  

 ( )t 2 t 5 t t 6 t t 4 t t 5T 0.25 T T 0.5 T+ ∆ +∆ +∆ +∆= + +  

 ( ) ( )t 2 t 5T 0.25 ____ C ____ C 0.5 ____ C ____ C+ ∆ = ° + ° + ° = °  

 ( )t 2 t 6 t t 7 t t 5 t t 6T 0.25 T T 0.5 T+ ∆ +∆ +∆ +∆= + +  

 ( ) ( )t 2 t 6T 0.25 ____ C ____ C 0.5 ____ C ____ C+ ∆ = ° + ° + ° = °  

t t 7 t t 6
t 2 t 7

T T
T

2

+∆ +∆
+ ∆

+
=  

( ) ( )
t 2 t 7

____ C ____ C
T ____ C

2
+ ∆

° + °
= = °  

For 3∆t: 

 [ ]t 3 t 1 t 2 t a t 2 t 1 t 2 t 2

1
T 0.065 T 1.935 T 2 T

4
+ ∆ + ∆ + ∆ + ∆= + +  

( ) ( )t 3 t 1 t 2 t t 2 t t 2 t

1
T 0.065 (______ C) 1.935 _______ C 2 59.73 C ______ C

4
+ ∆ + ∆ + ∆ + ∆= ° + ° + ° = °    

 ( )t 3 t 2 t 2 t 3 t 2 t 1 t 2 t 2T 0.25 T T 0.5 T+ ∆ + ∆ + ∆ + ∆= + +  

 ( ) ( )t 3 t 2T 0.25 60 C ______ C 0.5 59.73 C ______ C+ ∆ = ° + ° + ° = °  

 ( )t 3 t 3 t 2 t 4 t 2 t 2 t 2 t 3T 0.25 T T 0.5 T+ ∆ + ∆ + ∆ + ∆= + +  
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 ( ) ( )t 3 t 3T 0.25 _______ C _______ C 0.5 _______ C _______ C+ ∆ = ° + ° + ° = °  

 ( )t 3 t 4 t 2 t 5 t 2 t 3 t 2 t 4T 0.25 T T 0.5 T+ ∆ + ∆ + ∆ + ∆= + +  

 ( ) ( )t 3 t 4T 0.25 _______ C _______ C 0.5 _______ C _______ C+ ∆ = ° + ° + ° = °  

 ( )t 3 t 5 t 2 t 6 t 2 t 4 t 2 t 5T 0.25 T T 0.5 T+ ∆ + ∆ + ∆ + ∆= + +  

 ( ) ( )t 3 t 5T 0.25 _______ C _______ C 0.5 _______ C _______ C+ ∆ = ° + ° + ° = °  

 ( )t 3 t 6 t 2 t 7 t 2 t 5 t 2 t 6T 0.25 T T 0.5 T+ ∆ + ∆ + ∆ + ∆= + +  

 ( ) ( )t 3 t 6T 0.25 _______ C _______ C 0.5 _______ C _______ C+ ∆ = ° + ° + ° = °  

t 2 t 7 t 2 t 6
t 3 t 7

T T
T

2

+ ∆ + ∆
+ ∆

+
=  

( ) ( )
t 3 t 7

____ C ____ C
T ____ C

2
+ ∆

° + °
= = °   
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In a similar way, we can continue to perform this calculation for all the 20 time increments. The 

results for all temperatures (in °C) are shown in the following table: 

 n 

 1 2 3 4 5 6 7 

t 60 60 60 60 60 60 60 

t+∆t _______ _______ _______ 60 _______ _______ 60 

t+2∆t _______ 59.73 _______ _______ 60 _______ _______ 

t+3∆t 58.00 _______ 59.93 _______ _______ 60 _______ 

t+4∆t _______ _______ _______ 59.98 _______ _______ 60 

t+5∆t _______ 58.99 _______ _______ 60 _______ _______ 

t+6∆t 57.15 _______ 59.59 _______ _______ 60 _______ 

t+7∆t _______ _______ _______ 59.85 _______ _______ 60 

t+8∆t _______ 58.38 _______ _______ 59.94 _______ _______ 

t+9∆t 56.52 _______ 59.21 _______ _______ 59.98 _______ 

t+10∆t _______ _______ _______ 59.64 _______ _______ 59.99 

t+11∆t _______ 57.87 _______ _______ 59.84 _______ _______ 

t+12∆t 56.00 _______ 58.84 _______ _______ 59.93 _______ 

t+13∆t _______ _______ _______ 59.40 _______ _______ 59.95 

t+14∆t _______ 57.42 _______ _______ 59.70 _______ _______ 

t+15∆t 55.54 _______ 58.48 _______ _______ 59.85 _______ 

t+16∆t _______ _______ _______ 59.15 _______ _______ 59.87 

t+17∆t _______ 57.02 _______ _______ 59.54 _______ _______ 

t+18∆t 55.14 _______ 58.15 _______ _______ 59.73 _______ 

t+19∆t _______ _______ _______ 58.90 _______ _______ 59.77 

t+20∆t _______ 56.65 _______ _______ 59.36 _______ _______ 
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The graphical representation of these temperatures is shown in the following figure: 

 

54

55

56

57

58

59

60

1 2 3 4 5 6 7

T
 (

°C
)

n

t t+Δt

t+2Δt t+3Δt

t+4Δt t+5Δt

t+6Δt t+7Δt

t+8Δt t+9Δt

t+10Δt t+11Δt

t+12Δt t+13Δt

t+14Δt t+15Δt

t+16Δt t+17Δt

t+18Δt t+19Δt

t+20Δt


