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Chapter 4          

Principles of Steady - State Heat Transfer 

Heat transfer is occurring in many chemical and separation processes as a consequence of a 

temperature difference. In Chapter 4, the following problem modules explain the heat transfer 

processes involved in fuel cell vehicles and in the processes for producing fuel for fuel cells. 

4.1-1 Heat Loss through a Stainless Steel Bipolar Plate  

4.3-1 Cooling of a Fuel Cell 

4.3-2 Heat Loss from an Insulated Pipe 

4.3-3 Heat Loss by Convection and Conduction and Overall U 

4.3-4 Heat Generation in a Solid-Oxide Fuel Cell 

4.5-1 Heating of Natural Gas in Steam-Methane Reforming Process 

4.5-2 Trial-and-Error Solution for Heating of Steam 

4.5-3 Heating of Ethanol in Reforming Process 

4.5-4 Heat-Transfer Area and Log Mean Temperature Difference 

4.5-5 Laminar Heat Transfer and Trial and Error 

4.6-3 Heating of Steam by a Bank of Tubes in High-Temperature Electrolysis 

4.7-3 Natural Convection in Bipolar Plate Vertical Channel 

4.8-2 Steam Condensation in a Fuel Cell 

4.9-1 Temperature Correction Factor for a Heat Exchanger 

4.9-2 Effectiveness of Heat Exchanger 

4.11-1 Radiation in Cylindrical Solid-Oxide Fuel Cell 

4.15-1 Cooling Channels in Fuel Cell Bipolar Plates 
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Example 4.1-1: Heat Loss through a Stainless Steel Bipolar Plate 

Calculate the heat flux through a stainless steel bipolar plate in a polymer-electrolyte membrane fuel 

cell with a thickness of 4.5 mm. The fuel cell is operating at a temperature of 80 ºC during the 

summer season in Houghton, Michigan where the temperature is 70 ºF. 

Strategy 

The equation for the heat flux obtained from Fourier’s Law can be used to obtain the solution to this 

problem. 

Solution 

Equation 4.1-10 of Geankoplis is defining the heat transfer per unit area as follows: 

 ( )1 2

2 1

q k
T T

A x x
= −

−
 

We can substitute the values given in the problem statement into this equation, but first we need to 

convert the temperature outside the fuel cell to ºC: 

 ( )
( )T º F 32 70º F 32

T º C
1.8 1.8

− −
= =  

 T _________º C=  

Entering the temperatures inside and outside the fuel cell stack into the heat transfer equation, as 

well as the thickness of the bipolar plate represented by 
2 1

x x− , we get: 

 ( )

W
________

q m K ________ K 294.25 K
A __________  m

⋅= −  

 
2

q W
_____________

A m
=  

The thermal conductivity of steel was obtained from Table 4.1-1 of Geankoplis. 
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Example 4.3-1: Cooling of a Fuel Cell 

Air at a temperature of 25 °C is being used for cooling a single cell fuel cell. The convective heat 

transfer coefficient of the air is 
2

W
61.2

m °C⋅
 and is capable of removing heat at a rate of 183.6 W. 

What would be the dimensions of the square surface of the fuel cell if its temperature must not 

exceed 50°C?  

 

 

 

 

 

 

 

 

Strategy 

The heat transfer rate by convection can be obtained using Newton's Law of Cooling. 

Solution 

The heat flux q� when heat is being transferred by forced convection is defined as follows: 

 ( )Sq hA T T∞= −�  

where: 

 
2

W
q  heat transfer rate, 

m
=�  

 
2

W
h  convective heat transfer coefficient, 

m K
=

⋅
 

 ST  temperature on the surface of the object, °C=  

 T  temperature of the air, °C∞ =  

 A = surface area of the fuel cell, m
2
 

Air @ 25 °C Air @ 25 °C 
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To determine the dimensions of the surface of the fuel cell, we can substitute the given temperatures 

and heat transfer rate and solve for the area A to yield: 

 

( )2

____ ________  W
A

W________________
_________ 50 C 25 C

m °C

= =

° − °
⋅

 

 2A 0.12 m=  

Since the heat is being removed from the fuel cell through both the left and right faces of the fuel 

cell, this value of A must be divided by 2. Thus, 

 
2 2

fuel cell 2

0.12 m ___________  cm
A

2 1 m

 
=  

 
 

 2

fuel cellA ________ cm=  

The dimensions of a fuel cell with a square surface could be obtained as follows: 

 2

fuel cellL A ________ cm= =  

  L ________ cm=  

Therefore, for a heat transfer rate of 183.6 W, air at 25 °C can be used to keep the surface area of a 

________ cm x ________ cm fuel cell at a temperature of ________ °C. 
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Example 4.3-2: Heat Loss in Fuel Reforming Applications 

A pipe made of 308 stainless steel (schedule number 80) with a nominal diameter of 1.5" is carrying 

methane at a temperature of 400°C in a steam-methane reforming process for producing hydrogen. 

The pipe is insulated with a layer of glass-fiber with a thickness of 1". Determine the temperature at 

the interface between the pipe and the glass fiber and the heat loss through the insulated pipe with a 

length of 15 m. The surface of the insulating material is at a temperature of 25°C. 

A schematic of the pipe is shown below: 

 

 

 

 

 

 

 

 

Strategy 

The equation for the heat loss through a pipe can be applied to the different layers in the pipe. 

Solution 

The heat loss through the walls of a cylinder is given by: 

 in outT T
q

R

−
=  

where: 

 Tin = temperature at the inner wall of the pipe, K 

 Tout = temperature at the outer wall of the pipe, K 

 R = resistance of the pipe to the heat transfer through its walls, 
K

W
 

 

Natural Gas 

@ 400°C 

T1 

T2 

T3 
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In this problem, we need to apply this equation for both the steel pipe and the insulated pipe. The 

overall heat loss will be obtained using this equation for the insulated steel pipe. The resistance to 

heat transfer in cylindrical coordinates is calculated with the following equation: 

 out in

lm

r r
R

kA

−
=  

in this equation: 

 rout = outer radius of the cylinder, m 

 rin = inner radius of the cylinder, m 

 k = thermal conductivity of the material, 
W

m K⋅
 

 Alm = log mean area, m
2
 

The log mean area of the pipe is defined as: 

 out in
lm

A A
A

______
ln

 ______

−
=

 
 
 

 

where Aout and Ain are the outer and inner surface areas of the cylinder, respectively. 

Applying the equations for resistance and the log mean areas to the steel and the overall pipe we 

have:

Steel Pipe 

 1 2
1 2

1 2

T T
q

R
→

→

−
=�  

 2 1
1 2

steel lm,1 2

r r
R

k A
→

→

−
=  

 2 1
lm,1 2

2

1

A A
A

A
ln

A

→

−
=

 
 
 

 

 

Overall 

 1 3
1 3

1 2 2 3

T T
q

R R
→

→ →

−
=

+
�  

 

 3 1
lm,1 3

3

1

A A
A

A
ln

A

→

−
=

 
 
 
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To determine the log mean areas we need to look for the radius of the steel pipe in Appendix A.5 of 

Geankoplis. For the 1.5" pipe: 

 rin = r1 = __________ m 

 rout = r2 = __________m 

The radius of the pipe including the insulation is obtained by adding the thickness of 1" to the outer 

radius of the steel pipe. Hence, 

 r3 = __________m + 0.0254 m = __________m 

With these diameter values and the length of the pipe, the areas A1, A2 and A3 can be calculated as 

shown in the following steps. 

 A1 = 2πr1L = 2π(0.01905 m)( __________ m) = 1.795 m
2
 

 A2 = 2πr2L = 2π(__________m)( __________ m) = __________m
2
 

 A3 = 2πr3L = 2π(__________m)( __________ m) = __________m
2
 

The thermal conductivities for the glass fiber and the steel can be found in Appendix A.3 of 

Geankoplis and are shown below. The conductivity of the glass fiber was selected at the highest 

temperature available in Table A.3-15. The thermal conductivity of steel was obtained from Table 

A.3-16. 

 steel

W
k ____________________

m C
=

⋅°
 

 glass fiber 

W
k __________

m C
=

⋅°
 

Substituting the values we obtained into the equations for the individual layers yields: 

Steel Pipe 

1 2 2
1 2

1 2

T T __________ °C T
q

CR
_____________

W

→

→

− −
= =

°
�  

( )
4

1 2
2

____________ m ____________ m C
R 1.17 10

W W
21.6 ____________ m

m C

−

→

− °
= = ×

⋅°

 

2 2
2

lm,1 2 2

2

___________  m ___________  m
A 2.025 m

2.274 m
ln

1.795 m

→

−
= =

 
 
 
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Overall 

1 3

___________  °C ___________ °C
q 2695.6 W

C C
___________ 0.139

W W

→

−
= =

° °
+

�  

( )
2 3

2

___________  m 0.02415 m C
R 0.139

W W
___________ ___________ m

m C

→

− °
= =

⋅°

 

2 2
2

lm,2 3 2

2

___________  m ___________ m
A ___________ m

4.670 m
ln

2.274 m

→

−
= =

 
 
 

 

Hence, the heat loss through the insulated pipe is 2695.6 W. 

Since this answer represents the amount of heat lost per unit time, if we assume that the system is at 

steady state. The heat loss per unit time will be the same in the individual layers. Thus, we can use 

the equation for the heat loss through the steel pipe to determine the temperature at the steel-glass 

fiber interface. 

 2
1 2

______ °C T
q 2695.6 W

C
_____________

W

→

−
= =

°
�  

Solving for the temperature T2, we get: 

 2

C
T ___________ °C 2695.6 W _______________

W

° 
= −  

 
 

 2T ___________  °C=  

As it can be seen, the temperature at the pipe - insulator interface is almost the same as the 

temperature of the inner wall of the steel pipe. This is because most of the heat is lost through the 

metal pipe due to the high thermal conductivity of steel in comparison to the thermal conductivity of 

the insulating material. 
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Example 4.3-3: Heat Loss by Convection and Conduction in a Steam-Methane 

Reforming Process 

Natural gas at 400°C is flowing inside a steel pipe with an inner diameter of 1.5 in and an outer 

diameter of 1.9 in. The pipe is insulated with a layer of glass-fiber with a thickness of 1 in. The 

convective coefficient outside the insulated pipe is 
2

btu
1.23

ft hr F⋅ ⋅°
. The temperature on the external 

surface of the pipe is 43.4°C.  

Calculate the convective coefficient of natural gas and the overall heat transfer coefficient U based 

on the inside area Ai, if heat is being lost at a rate of 
btu

7115
hr

in a pipe with a length of 49.2 ft. 

Strategy 

To determine the heat transfer coefficients, we will use the equation for heat loss for a multilayer 

cylinder. 

Solution 

The heat loss through a cylinder with different layers is defined by the following equation:  

 i o i o

i A B o

T T T T
q

R R R R R

− −
= =

+ + +∑
�  

where: 

 Ti = Temperature on the internal surface of the pipe 

 To = Temperature on the external surface of the pipe 

 Ri = Convective resistance inside the pipe 

 RA = Conductive resistance through the steel pipe 

 RB = Conductive resistance through the insulation layer 

 Ro = Convective resistance outside the pipe 

The resistance to heat transfer due to convection is defined as follows: 

 conv

1
R

hA
=  
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where: 

 h = Convective heat transfer coefficient 

 A = Area of heat transfer 

The resistance of a cylinder to heat conduction is calculated as follows: 

 out in
cond

lm

r r
R

kA

−
=  

where: 

 rout = Outer radius of the cylinder 

 rin = Inner radius of the cylinder 

 k = thermal conductivity of the material 

 Alm = log mean area of the cylinder 

We can enter the definitions of the resistances due to conduction and convection into the equation 

for the heat loss to yield: 

 i o

o 11 i

i i steel A,lm glass fiber B,lm o o

T T
q

r rr r1 1

h A k A k A h A−

−
=

−−
+ + +

�  

In this equation: 

 ri = inner radius of the steel pipe = 
1.5 in

2
= ____________ in 

 r1 = outer radius of the steel pipe = 
1.9 in

2
= ____________ in 

 ro = outer radius of the insulated pipe =  ___________  in 

With these values we can calculate the log mean areas AA,lm and AB,lm and the inner and outer areas 

of the insulated pipe. Thus, 

 ( ) ( ) 2

i i

1 ft
A 2 r L 2 0.75 in ___________  ft ___________ ft

12 in

 
= π = π = 

 
 

 ( ) ( ) 2

1 1

1 ft
A 2 r L 2 ___________  in ___________  ft 24.48 ft

12 in

 
= π = π = 

 
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 ( ) ( ) 2

o o

1 ft
A 2 r L 2 ___________  in ___________  ft ___________  ft

12 in

 
= π = π = 

 
 

 
2 2

21 i
A,lm 2

1
2

i

A A 24.48 ft ___________  ft
A 21.80 ft

24.48 ftA
lnln

___________  ftA

− −
= = =

   
   

  

 

 
2 2

2o 1
B,lm 2

o

2

1

A A ___________  ft 24.48 ft
A ___________ ft

___________  ftA
lnln

24.48 ftA

− −
= = =

   
   

  

 

The temperature of the inner and outer surfaces of the pipe are given in °C and therefore, they must 

be converted to °F: 

 ( )iT ( F) 400 C 1.8 32 ___________ F° = ° × + = °   

 ( )oT ( F) 43.4 C 1.8 32 ___________ °F° = ° × + =  

Now we can substitute all the values into the heat loss equation and solve for the convective 

coefficient hi: 

 

1

i o o 11 i
i

i steel A,lm glass fiber B,lm o o

T T r rr r1 1
h

A q k A k A h A

−

−

 − −−
= − − − 

  �
 

The thermal conductivity values can be obtained from Appendices A.3-15 and A.3-16 of 

Geankoplis. However, since the values are given in the SI system they must be converted to the 

English system. Hence, 

 

steel

J 1 btu ___________  m 3600 s 1 °C btu
k 45 26

m s C ___________  J 1 ft 1 hr ___________  °F ft hr F

     
= =     

⋅ ⋅ ° ⋅ ⋅°     
 

glass fiber

J 1 btu _________  m 3600 s 1 °C btu
k ______ 0.0317

m s C _________  J 1 ft 1 hr _____  °F ft hr F
−

     
= =     

⋅ ⋅° ⋅ ⋅ °     
 

The thermal conductivities of steel and glass-fiber were obtained at the highest temperature available 

in Appendix A.3. 
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Now we can calculate the convective heat transfer coefficient hi as shown below: 

( )

( )

( )

i 2
2

1ft
___________  in 0.75 in

___________  in1 ___________ F 110.1 F
h

btu btu___________  ft
7115 26 ___________  ft

hr ft hr F

1 ft
___________  in 0.95 in

___________  in
   

btu
0.0317 _____

ft hr F

  
−  

° − °  = −

 ⋅ ⋅°

 
−  

 −

⋅ ⋅°
( ) ( )

1

2 2

2

1

btu
______  ft ___________ ___________  ft

ft hr F

−


−

⋅ ⋅ ° 

 

1

5

i 2

1 hr F hr F hr F hr F
h __________ 2.95 10 __________ 0.0162

________  ft btu btu btu btu

−

−⋅° ⋅° ⋅° ⋅° 
= − × − −  

 

i 2

btu
h __________

ft hr F
=

⋅ ⋅°
 

To calculate the overall heat transfer coefficient U we need to use the equation for the heat loss in 

terms of U. Thus, 

 i i i oq U A (T T )= −�  

We can solve this equation for the coefficient U and substitute the corresponding values to get: 

( )i 2

i i o

btu
7115

q hrU
A (T T ) ________  ft ________ F 110.1 F

= =
− ° − °

�
 

i 2

btu
U ________

ft hr F
=

⋅ ⋅°
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Example 4.3-4: Heat Generation in a Tubular Solid-Oxide Fuel Cell 

A tubular solid-oxide fuel cell with an outer diameter of 2.2 cm and a length of 150 cm is operating 

at a current density of 
2

mA
202.6

cm
. Determine the heat generation rate in 

3

W

m
 if the voltage of the 

fuel cell is 1 V. Assume that the thickness of the electrodes and electrolyte membrane are small 

compared to the overall diameter of the fuel cell. 

The following figure shows a tubular solid-oxide fuel cell: 

 

  

Strategy 

The heat generation rate of the fuel cell can be obtained from the power of the fuel cell, which 

depends on the current and the voltage. 

Solution 

The heat generated by the fuel cell in terms of the power is given by the equation shown below: 

 
2

P
q

R L
=

π
�   

The power of the fuel cell can be obtained by multiplying the current by the voltage of the fuel cell. 

Hence, 

 P = IV 

 

                                                                                                      

Cathode 

Fuel flow 

Anode         Air Flow 

Electrolyte 

Cathode interconnection 
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Substituting this equation into the equation for the heat generation rate yields: 

 
2

IV
q

R L
=

π
�  

The problem statement is not giving the value of the current. However, if we calculate the cross-

surface area of the fuel cell we can determine the value of the current in A: 

 
surface

I I
i

A 2 RL
= =

π
 

Solving for the current I and substituting the dimensions of the fuel cell into this equation, we get: 

 ( )( ) 2

mA 1 A
I DLi ________  cm ________ cm 202.6

cm 1000 mA

  
= π = π   

  
 

 I ________  A=  

Entering this value into the heat generation equation we have: 

 
( )

( )
2 3

3

________  A 1 V
q

________ cm 1 m
________  cm

2 __________ cm

=
  

π   
   

�  

 5

3

W
q 3.68 10

m
= ×�  
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Example 4.5-1: Heating of Natural Gas- in Steam-Methane Reforming Process 

 

Natural gas at a temperature of 310°C is flowing inside a steel pipe Schedule 80 with an inner 

diameter of 1.5 in at a rate of 
3

3 m
7.79 10

s

−× . The natural gas is being heated by the product of the 

reforming process at 850°C. The convective heat transfer coefficient of the reformate is 
2

W
1025

m K⋅
. 

Calculate the heat transfer rate in W  through a pipe with a length of 7 m. The properties of natural 

gas are given in the following table. 

ρ 
3

kg
7.859

m
 

Cp 
J

3087
kg K⋅

 

k W
0.0803

m K⋅
 

µb 5 kg
1.942 10

m s

−×
⋅

 

µw 5 kg
2.909 10

m s

−×
⋅

 

 

Strategy 

The equation for heat transfer through a pipe will be used to determine the heat flux. 

Solution 

When heat is being transferred through a fluid, the heat flux is given by: 

 
( )r nT T

q
R

−
=
∑

�  

where: 

 q =� Heat transfer rate in W 

 Tr = Temperature of the heating medium (reformate), °C or K 

 Tn = Temperature of the fluid inside the pipe (natural gas), °C or K 

 R∑ = Sum of resistances to heat transfer through the pipe, 
C K

  or 
W W

°
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In this problem, the sum of the resistances is given by the sum of two convective resistances (fluid 

inside and outside the pipe) and the resistance to heat flow through the steel pipe. Thus, 

 o i

i i steel lm o o

r r1 1
R

h A k A h A

−
= + +∑  

The parameters we need to calculate before being able to use the equation for heat transfer in terms 

of the resistances are: Ai, Alm, Ao and hi. The heat transfer areas are calculated using the inner and 

outer diameters of the pipe from Appendix A.5. 

 ( ) ( ) 2

i iA D L 0.0381 m 7 m _________  m= π = π =  

 ( )( ) 2

o oA D L _________  m 7 m _________  m= π = π =  

 

2 2
2o i

lm 2

o

2

i

A A _________  m _________  m
A 0.945 m

_________  mA
lnln

_________  mA

− −
= = =

   
   

  

  

The following correlation can be used for calculating the heat transfer coefficient for an aspect ratio 

(length/diameter) of the pipe greater than 60.  

 

0.14
1

0.8 b3
L Re Pr

w

k
h 0.027 N N

D

 µ
=  

µ 
 

where: 

 k = Thermal conductivity of the fluid inside the pipe, 
W

m K⋅
  

 NRe = Reynolds number 

 NPr = Prandtl number 

 bµ = Viscosity of the fluid in the pipe at the bulk temperature,
kg

m s⋅
 

 wµ = Viscosity of the fluid in the pipe at the temperature of the inner wall,
kg

m s⋅
 

In this problem, 
L 7 m

_________
D 0.0381 m

= = . Hence, we can use this correlation to calculate hL. 
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The dimensionless quantities NRe and NPr are defined as follows: 

 Re

D
N

υρ
=

µ
   

p

Pr

C
N

k

µ
=  

The velocity of the natural gas is obtained by dividing the volumetric flow rate by the cross-sectional 

area of the pipe. Thus, after substituting the corresponding quantities into the equations for Reynolds 

and Prandtl numbers, we have: 

 

3

3

2

i

Re

m
______________

kgs0.0381 m 7.859
V ______________ mD
r

N __________________
kg

_______________
m s

 
 
  
 ρ   π   = = =

µ

⋅

�

 

 
p

Pr

J kg
3087 ________________

C kg K m s
N _____________

Wk
______________

m K

 
 µ ⋅ ⋅ = = =

⋅

 

Now we can substitute the dimensionless numbers we just calculated and the properties of the fluid 

into the equation for the heat transfer coefficient to yield: 

 ( ) ( )

0.14

10.8
3

L

kgW
______________0.0803

m sm Kh 0.027 ________________ _______
kg0.0381 m

______________
m s

 
 ⋅⋅=  
 

⋅ 

 

 L 2

W
h _____________

m K
=

⋅
 

The convective heat transfer coefficient hL was obtained using the properties of the fluid inside the 

pipe. Therefore, the heat transfer coefficient hL is equal to the heat transfer coefficient hi. 

Substituting the corresponding quantities into the equation for the heat transfer rate q� . The thermal 

conductivity was obtained from Appendix A.3. 

 

( )

( ) ( ) ( )2 2 2

2 2

850 C 310 C
q

1 0.04826 m 0.0381 m 1

W W W
_________ _________  m 45 0.945 m _________ _________  m

m K m K m K

° − °
=

−
+ +

⋅ ⋅ ⋅

�

 

q ____________ W=�  
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Example 4.5-2: Trial-and-Error Solution for Heating of Steam 

Steam at a temperature of 150°C is being heated before entering a steam-methane reforming unit to 

produce hydrogen for fuel cells. The heating medium is the synthesis gas produced by the steam-

methane reforming unit at 850 °C. The convective heat transfer coefficient of the syngas is 

2

W
950

m K⋅
. The steam is flowing in a 1.5-in schedule 40 steel pipe at a velocity of 

m
20.1

s
. 

Determine the overall coefficient Ui for a pipe with a length of 6.2 m.  

Strategy 

We can determine the convective heat transfer coefficient using the properties of steam at the 

temperature of the inner wall of the pipe. This temperature will be determined by trial and error. 

Solution 

The overall heat transfer coefficient can be determined from the equation for the heat transfer rate 

through the pipe: 

 o i
i i o i

T T
q U A (T T )

R

−
= − =

∑
�  

The temperature difference To - Ti can be eliminated from this equation to yield: 

 i

1
U

___________
=  

where: 

 o i

i i lm o o

r r1 1
R

h A kA h A

−
= + +∑  

The convective coefficient hi can be calculated using the following correlation. 

 

0.14
1

0.8 b3
L Re Pr

w

k
h 0.027 N N

D

 µ
=  

µ 
 

The dimensionless quantities in this equation will be determined using the properties of steam at the 

temperature of the inner wall of the pipe. For the first trial, this temperature will be assumed to be 

about one-quarter the difference between the temperatures of the steam and the air. Thus, 

 w,assumed

850 C 150 C
T 150 C __________ C

4

° − °
= + ° = °  
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From Table A.2-12 of Geankoplis we can get the properties of steam at a temperature of 148.9 °C, 

which is relatively close to the bulk temperature of the steam inside the pipe (150°C). 

 
3

kg
__________

m
ρ =   5

b

kg
1.488 10

m s

−µ = µ = ×
⋅

  PrN __________=  

 p

J
C 1909

kg K
=

⋅
  

W
k __________

m K
=

⋅
 

The other parameter required to use the correlation for calculating hL is the viscosity of steam at Tw. 

This can be obtained using linear interpolation from the data in Table A.2-12. Hence, 

 

5

w

5

kg
2.113 10

325 C 315.6 C m s
kg kg371.1 C 315.6 C

______________ 2.113 10
m s m s

−

−

µ − ×
° − ° ⋅=
° − ° − ×

⋅ ⋅

 

Solving for the viscosity µw we get: 

 

5

w

325 C 315.6 C kg kg kg
_______________ 2.113 10 _______________

371.1 C 315.6 C m s m s m s

−° − °  
µ = − × + 

° − ° ⋅ ⋅ ⋅ 
 

w

kg
_______________

m s
µ =

⋅
 

With the properties of steam, we can now determine the Reynolds number as shown in the following 

steps. The diameter of the pipe was obtained from Table A.5-1 of Geankoplis 

3

Re
5

m kg
___________  m _______ 0.525

D s m
N _______________

kg
1.488 10

m s

−

  
  υρ   = = =

µ ×
⋅

 

Substituting this value into the correlation for hL we get: 

 

( ) ( )

0.14

5

10.8
3

L

kgW
1.488 10____________

m sm Kh 0.027 _______________ 0.95
kg0.04089 m

_______________
m s

− 
× ⋅⋅=  

 
⋅ 

 

L 2

W
h ____________

m K
=

⋅
 

Now we can proceed to calculate the sum of the resistances to heat transfer as follows: 
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 o i

i i lm o o

r r1 1
R

h A kA h A

−
= + +∑  

The heat transfer areas are calculated using the inner and outer diameters of the pipe from Appendix 

A.5. 

 ( ) ( ) 2

i iA D L 0.04089 m ______  m ___________  m= π = π =  

 ( )( ) 2

o oA D L 0.04826 m ______  m ___________  m= π = π =  

 
2 2

2o i
lm 2

o

2

i

A A _______  m _______  m
A 0.866 m

_______  mA
lnln

_______  mA

− −
= = =

   
   

  

 

These values can be entered into the equation for the sum of resistances to yield: 

 

( ) ( ) ( )2 2 2

2 2

1 0.04826m 0.04089 m 1
R

W W W
_______ _________  m 45 0.866 m 950 _______  m

m K m K m K

−
= + +

⋅ ⋅ ⋅

∑  

K
R _________

W
=∑  

The thermal conductivity value of steel was obtained from Table A.3-16. To determine if the value 

of Tw we selected is correct, we need to solve for the temperature from the equation for the heat 

resistance due to the steam in the pipe: 

 ( )i
w,calculated b o b

R
T T T T

R
− = −

∑
 

Solving for Tw and substituting the rest of the values into this equation, we have that: 

 ( )w,calculated b o b

i i

1
T T T T

h A R
= + −

∑
 

 

( )
( )w,calculated

2

2

1
T 150 C 850 C 150 C

W K
_______ _______  m _______

m K W

= ° + ° − °
 
 

⋅  

 

w,calculatedT _________ C= °  
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It can be see that the Tw,assumed does not match Tw,calculated. Hence, we have to repeat the procedure for 

determining the temperature of the inner wall. The Tw value will affect the value of hL since we have 

to look for a new value of µw in Appendix A.3. 

Selecting a higher Tw for the second trial will yield a higher µw, resulting in a lower heat transfer 

coefficient hL and a higher R∑ . For the second trial, we will select: 

 Tw,assumed = 800°C 

Substituting the viscosity µw into the equation for the heat transfer coefficient hL yields: 

 ( ) ( )

0.14

5

10.8
3

L
5

kgW
1.488 10__________

m sm Kh 0.027 ____________ _____
kg0.04089 m

3.95 10
m s

−

−

 
× ⋅⋅=  

 ×
⋅ 

 

 L 2

W
h ________

m K
=

⋅
 

For this value of hL we will get the sum of the resistances as follows: 

 

( ) ( ) ( )2 2 2

2 2

1 0.04826m 0.04089 m 1
R

W W W
62.3 _________  m _______ 0.866 m 950 _________  m

m K m K m K

−
= + +

⋅ ⋅ ⋅

∑  

K
R ________

W
=∑  

Solving for Tw and substituting the rest of the values into this equation, we have that: 

( )
( )

( )w,calculated b o b
2i i

2

1 1
T T T T 150 C 850 C 150 C

W Kh A R
62.3 _______  m _______

m K W

= + − = ° + ° − °
 
 

⋅  
∑

 

w,calculatedT __________ C= °  

The only property that will change for the third trial is the viscosity µw. By changing the temperature 

again, the effect on the convective coefficient hL will be negligible. Hence, we can use the calculated 

Tw value of ________°C. 

Now we can substitute the values of R∑ at Tw = _________°C and the inner area of the pipe to 

obtain the overall heat transfer coefficient Ui as shown in the following steps: 

 i

i

1
U

A R
=

∑
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( )
i

2

1
U

K
________  m ________

W

=
 
 
 

 

 i 2

W
U 59.8

m K
=

⋅
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Example 4.5-3: Heating of Ethanol in Reforming Process 

A vapor mixture of ethanol and water is used in a reforming process to produce hydrogen for proton-

exchange membrane fuel cells. In a distributed-scale process, the ethanol mixture is flowing at a rate 

of 
kg

0.367
s

and is entering a 1" steel pipe Schedule 40 at a temperature of 210.4°C. Determine the 

length of the pipe required if the vapor is exiting at 350°C and the inner wall of the pipe is at a 

constant temperature of 270°C. The properties of the vapor mixture are summarized in the following 

table. 

µ 51.284 10 Pa s−× ⋅  

ρ 
3

kg
13.2

m
 

Cp 
J

2211
kg K⋅

 

k W
0.03631

m K⋅
 

 

Strategy 

To determine the heat transfer area we can use the equation for heat flux through a fluid. 

Solution 

The heat flux when heat is being transferred by a fluid is given by: 

 ( )L w

q
h T T

A
= −
�

 

where Tw is the temperature of the inner wall of the pipe, and T is the bulk temperature of the 

ethanol and water mixture. Since the problem statement is giving the flow rate and properties of the 

fluid, the heat transfer rate can be calculated with the equation for sensible heat: 

 ( )p out inq mC T T= −� �  

In this equation, Tin and Tout are the temperatures of the ethanol/water mixture at the inlet and outlet 

points, respectively. 

Substituting this equation into the equation for heat flux, we get: 

 
( )p out inmC T T

______________________
______

−
=

�

 

Solving for the heat transfer area we have: 
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( )p out inmC T T

A
______________

−
=
�

 

To determine the heat convective heat transfer coefficient, the following correlation can be used for 

a pie with constant wall temperature and if NPe>100 and L/D>60: 

 ( )0.8

L Pe

k
h 5.0 0.025N

D
= +  

where: 

 NPe = Peclet number 

We can calculate Peclet number by multiplying Reynolds number by Prandtl number and thus 

determine if it is valid to use this correlation. 

 NPe = NReNPr 

 Re

D
N

υρ
=

µ
 

 

( )
p

Pr

J
2211 ______________ Pa s

C kg K
N ______

Wk
0.03631

m K

⋅
µ ⋅

= = =

⋅

 

The velocity of the fluid is calculated by dividing the volumetric flow rate by the cross-sectional area 

of the pipe. The diameter of the pipe is obtained from Appendix A.5 of Geankoplis. 

 
( )

2
cross

3

kg
________

m ms ________
A s________  mkg

13.2
m 4

υ = = =
ρ  π

 
  

�
 

Entering this velocity value into the definition of Reynolds number yields: 

 
3

Re
5

m kg
________ m ________ 13.2

D s m
N _________________

kg
1.284 10

m s

−

  
  υρ   = = =

µ ×
⋅
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Now we can determine the Peclet number to be given by: 

 ( )PeN  ____________ ______=  

 PeN  ______________=  

Therefore, the correlation we selected is valid for this problem and the convective heat transfer 

coefficient is found to be: 

 ( )
0.8

L

W
0.03631

m Kh 5.0 0.025 _______________
__________  m

⋅  = +
 

 

 L 2

W
h ___________

m K
=

⋅
 

This value can be entered into the equation for the heat transfer area to yield: 

 
( )
( )

( )

( )

p out in

L w
2

kg J
0.367 2211 _______ C 210.4 C

mC T T s kg K
A

Wh T T
________ _______ C 210.4 C

m K

 
° − ° − ⋅ = =

− ° − °
⋅

�

  

 2A __________ m=  

The area for heat transfer is given by: 

 A DL= π  

This equation can be solved for the length of the pipe L to give: 

 
( )

2________ m
L

___________  m
=

π
 

 L ________  m=  
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Example 4.5-4: Heat-Transfer Area and Log Mean Temperature Difference 

An ethanol/water vapor mixture with a heat capacity of 
kJ

2.23
kg C⋅ °

 in a mid-scale ethanol-

reforming plant is heated from 210.4 °C to 350 °C. This mixture is flowing at a rate of 

5 kg
5.18 10

day
× . The vapor is being heated by air flowing at a rate of 6 kg

2.752 10
day

× , temperature of 

560.6 °C and a heat capacity of 
kJ

1.166
kg C⋅°

. What type of flow for this heat exchanger will you 

select between countercurrent and parallel flow if the overall heat transfer coefficient is 

2

W
92.4

m C⋅ °
?. 

Strategy 

To determine which type of flow is more efficient for this process we need to determine the heat 

transfer area for both types of flow. 

Solution 

The amount of heat gained by the ethanol mixture in terms of the overall heat transfer coefficient is 

given by the equation shown below: 

 i i lmq U A T= ∆�  

where lmT∆ is the log mean temperature difference defined as: 

 2 1
lm

2

1

T T
T

T
ln

T

∆ − ∆
∆ =

 ∆
 

∆ 

 

The q�  equation can be solved for the area Ai to yield: 

 i

q
A

_________
=

�
 

Since we know the inlet and outlet temperatures of the ethanol/water mixture we can calculate the 

amount of heat gained as shown in the following steps: 

 ( )ethanol p,ethanol ethanol,out ethanol,inq m C T T= −� �  

 ( )5 kg kJ 1 day
q 5.18 10 2.23 _______ C _______ C

day kg C __________

   
= × ° − °   

⋅°   
�  
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 q __________ kW=�  

To determine the log mean temperature difference required to calculate the heat transfer area we 

need to obtain the temperature of the air leaving the heat exchanger. We know that the amount of 

heat gained by the ethanol mixture is being lost by the heating air. Thus, the temperature can be 

determined as follows: 

 ( )air p,air air,in air,outq m C T T= −� �  

 

air,out

6

__________ kW
T _________ ____________ _______  C

kg kJ 1 day
2.752 10 1.166

day kg C _________

= − = ° −
  

×   
⋅ °  

 

air,outT _________ C= °  

Now that we know the inlet and outlet temperatures of both the air and the ethanol mixture, we can 

calculate the log mean temperature difference. Hence, 

 2 1
lm

2

1

T T
T

T
ln

T

∆ − ∆
∆ =

 ∆
 

∆ 

 

where: 

 1,countercurrent air,in ethanol,outT T T _________ C _________ C∆ = − = ° − °  

 1,countercurrentT _________ C∆ = °  

 2,countercurrent air,out ethanol,inT T T _________ C _________ C∆ = − = ° − °  

 2,countercurrentT _________ C∆ = °  

Substituting the values of ∆Ti into the definition of the log mean temperature difference we get: 

 lm,countercurrent

_________ C _________ C
T

_________ C
ln

_________ C

° − °
∆ =

 °
 

° 

 

 lm,countercurrentT _________ C∆ = °  
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For countercurrent flow, we can find the heat transfer area to be given by: 

 

( )
i,countercurrent

2

1000 W
_________ kW

1 kW
A

W
92.4 _________ C

m C

 
 
 =

°
⋅°

  2

i,countercurrentA _________ m=  

To determine the heat transfer area for parallel flow, we can use Figure 4.5-3 of Geankoplis to 

calculate the log mean temperature difference for parallel flow, which will be given by: 

 2 1
lm

2

1

T T
T

T
ln

T

∆ − ∆
∆ =

 ∆
 

∆ 

 

where: 

 1,parallel air,out ethanol,outT T T ________ C ________ C∆ = − = ° − °  

 1,parallelT _________ C∆ = °  

 2,parallel air,in ethanol,inT T T ________ C ________ C∆ = − = ° − °  

 2,parallelT _________ C∆ = °  

 lm,parallel

_________ C _________ C
T _________ C

_________ C
ln

_________ C

° − °
∆ = = °

 °
 

° 

 

Substituting the log mean temperature difference into the equation for Ai,parallel we have: 

 

( )
i,parallel

2

1000 W
_________ kW

1 kW
A

W
92.4 _________ C

m C

 
 
 =

°
⋅°

    

 2

i,parallelA _________  m=  

Conclusion: 
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Example 4.6-3: Heating of Steam by a Bank of Tubes in High-Temperature 

Electrolysis 

High-temperature electrolysis is a process for producing hydrogen from water for use in fuel cells. 

Before entering the electrolysis stack, steam at a pressure of 50 bar is being heated from 650°C to 

850°C by a bank of 1" (nominal diameter) commercial steel tubes containing 12 rows normal to the 

flow and 7 staggered rows in the direction of flow. The length f the tubes is 0.4 m. 

The heating medium circulating in the tubes is helium coming from a nuclear source and the outer 

surface of the tubes is at a temperature of 1000°C. Determine the heat-transfer rate to the steam if the 

velocity of steam is 
m

16.7
s

. 

A diagram of this heating process is shown below: 

 

 

 

 

 

 

 

Strategy 

To solve this problem we need to calculate the amount of heat transferred by convection. The heat 

transfer area will depend on the number of tubes. 

Solution 

The amount of heat gained by the steam can be calculated with the following equation: 

 ( )w bq hA T T= −�  

The bulk temperature of steam Tb is obtained taking the average of the inlet and outlet temperatures: 

 b

850 C 650 C
T _________ C

2

° + °
= = °  

The temperature of the outer surface of the tube is constant and equal to 1000°C. 

Steam 

Sp=0.0418 m 

Sn=0.0418 m 

Helium from nuclear 

source flowing inside the 

tubes 
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To calculate the amount of heat transferred, we need to obtain the heat transfer area of the tubes. The 

area of a single tube is calculated as follows: 

 tubeA DL= π  

Substituting the diameter from Appendix A.5 of Geankoplis and the length of 0.4 m into this 

equation, we can determine the area of a single tube to be:  

 ( )( )tubeA _________ m ______ m= π  

 2

tubeA ________ m=  

Since there are 7 columns and 12 rows of tubes, this area must be multiplied by the total number of 

tubes in the bank. Thus, 

 ( )( )( )2

rows columns tubeA n n A 7 12 _________  m= =  

 2A _________  m=  

Now we need to determine the heat transfer coefficient of steam using the correlation for flow past a 

bank of tubes, shown in Section 4.6 of Geankoplis. 

 m 1/3

calculated Re Pr

k
h CN N

D
=  

In this equation, the parameters C and m will depend on the ratio of the distance between the tubes 

and their outer diameter. For this electrolysis process, the ratio is given by: 

 
pn

SS _________ m
1.251

D D _________ m
= = =  

Using Table 4.6-2 of Geankoplis, we can find the values of C and m for staggered tubes to be: 

 C = _________  

 m = _________  

The dimensionless parameters NRe and NPr are calculated from the properties of steam at the film 

temperature, obtained as follows: 

 w b
f

T T _________ C 750 C
T

2 2

+ ° + °
= =  

 fT _________ C= °  
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The properties of steam were obtained from Table 2-305 of Perry's Chemical Engineers' Handbook, 

8th Edition and are shown below: 

 
W

k 0.1203
m K

=
⋅

 

 p

J
C 2441.3

kg K
=

⋅
 

 54.34 10  Pa s−µ = × ⋅  

 
3

kg
9.508

m
ρ =  

Substituting these properties into the definition of Prandtl number we get: 

 
( )

Pr

__________________ ____________  Pa s
N

_______________

⋅
=  

 PrN _________=  

The maximum velocity required to calculate Reynolds number is obtained using the outer diameter 

of the pipes and the distance between the pipes normal to the direction of flow as shown in the 

following equation: 

 n
max

n

S

S D

υ
υ =

−
 

We can enter the velocity of steam, the diameter and the distance between the pipes into this 

equation to yield: 

 
( )

max

m
16.7 __________  m

s

__________  m __________  m
υ =

−
 

 max

m
__________

s
υ =  

Now the Reynolds number can be determined as shown in the next steps: 

 max
Re

D
N

υ ρ
=

µ
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3

Re 5

m kg
_________ m ______ 9.508

s m
N

4.34 10  Pa s−

  
  
  =

× ⋅
 

 ReN ____________=  

Substituting the dimensionless parameters we calculated and the corresponding values into the 

equation for hcalculated, we have: 

 m 1/3

calculated Re Pr

k
h CN N

D
=  

 ( )( ) ( )
0.556 1/3

calculated

W
0.1203

m Kh _______ _____________ ________
__________  m

⋅=  

 calculated 2

W
h ____________

m K
=

⋅
 

The value of the heat transfer coefficient that has to be entered into the equation for the heat transfer 

rate has to be multiplied by a factor that depends on the amount of rows in the direction of flow. 

For 7 rows and staggered tubes we can find this factor in Table 4.6-3 of Geankoplis to be _______. 

Thus, the actual value of the heat transferred coefficient will be given by: 

 calculated 2

W
h ______ h ______ ____________

m K

 
= =  

⋅ 
 

 
2

W
h ___________

m K
=

⋅
 

Entering this value into the equation for q� , we get: 

 ( )( )2

2

W
q ___________ ___________  m 1000 C 750 C

m K
= ° − °

⋅
�  

 q ______________ W=�  
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Example 4.7-3: Natural Convection in Bipolar Plate Vertical Channel 

Hydrogen at standard pressure is flowing by natural convection in the bipolar plate channels of a fuel 

cell. These channels have a length of 24.94 cm and a thickness and height of 1 mm. Determine the 

heat transfer rate across the channel if the temperature of the walls is constant and equal to 82 °C. 

The surface of the gas diffusion layer adjacent to the channel is at a temperature of 85.17 °C. A 

schematic of the bipolar plate channels is shown in the following figure. 

 

 

 

 

Strategy 

The heat transfer rate by convection can be calculated by using correlations that involve 

dimensionless groups. 

Solution 

When heat is being transfer by convection, the heat transfer rate q� is given by: 

 ( )1 2q hA T T= −�  

The heat transfer area can be calculated from the dimensions of the channel as shown below: 

 ( ) ( )( )A 2L t H 2 0.2494 m 0.001 m 0.001 m= + = +  

 2A ___________ m=  

To determine the heat transfer coefficient, we can use the definition of Nusselt number: 

 Nu

hH
N

k
=  

where H is the height of the channel. 

However, since the Nusselt number is not given, we need to use another correlation in terms of 

dimensionless groups. In section 4.7 of Geankoplis, multiple correlations are shown as function of 

the Grashof and Prandtl numbers. We need to select the adequate correlation depending on the value 

yielded by the product of these dimensionless groups defined as follows: 

 
( )3

1 2

Gr 2

H g T T
N

ρ β −
=

µ
 

1 mm 

1 mm 

249.4 mm 
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In this equation: 

 H = height of the bipolar plate channel, m 

 ρ = density of hydrogen, 
3

kg

m
 

 g = acceleration due to gravity = 
2

m
9.80665

s
 

 β  = volumetric coefficient of expansion of hydrogen = 
f

1

T
, K

-1
 

 µ = viscosity of hydrogen, 
kg

m s⋅
 

We can find the properties of hydrogen in Appendix A.3 of Geankoplis at the film temperature given 

by: 

 1 2
f

T T ________ C ________ C
T

2 2

+ ° + °
= =  

 fT ________ C ___________ K= ° =  

The properties of hydrogen at this temperature (shown below) can be substituted into the equation 

for Grashof number to get: 

3

kg
0.068

m
ρ =  

6 kg
9.92 10

m s

−µ = ×
⋅

 

3 11
2.80 10 K

356.74 K

− −β = = ×  

 

( ) ( )( )
3 1

3 2

Gr 2

6

kg m
0.001 m 0.068 __________ ___________ K ________ C ________ C

m s
N

kg
9.92 10

m s

−

−

  
° − °  

  =
 

× 
⋅ 

 

GrN ________=  
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In Appendix A.3 we can also find the value of Prandtl number for hydrogen to be: 

 PrN ________=  

The product of Grashof and Prandtl numbers can now be obtained as follows: 

 ( )Pr GrN N ________ ________ ________= =  

Looking at the correlations in Section 4.7 of Geankoplis, we find that the Nusselt number 

corresponding to this value of Pr GrN N  is 1. Thus, we can solve for the heat transfer coefficient from 

the definition of Nusselt number to yield: 

 Nu

W
________ ________

N k m K
h

H 0.001 m

 
 

⋅ = =  

 
2

W
h ________

m K
=

⋅
 

Now we can enter the corresponding quantities into the equation for the heat transfer rate to obtain: 

 ( )( )2

2

W
q ________ ______________ m ________ C ________ C

m K
= ° − °

⋅
�  

 q ________ W=�  
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Example 4.8-2: Condensation in Bipolar Plate Channels in Fuel Cells 

The reaction occurring in a proton-exchange membrane fuel cell is producing water at a rate of 

5 kg
7.65 10

s

−× through each channel on the bipolar plate in the cathode side. This amount of water is 

produced as steam at a temperature of 77°C. Determine if the water is condensing in a single channel 

if the partial pressure of water is 37.91 kPa. The dimensions of the channel are shown in the 

following figure: 

 

   

 

 

 

The Nusselt number for a square tube with constant temperature at the boundaries is 2.98. Frano 

Barbir in Section 6.5.2 of the book PEM Fuel Cells - Theory and Practice published by Prentice 

Hall estimates the average temperature in the bipolar plate channels to be 64.1°C. 

Strategy 

In this problem, condensation will occur if the amount of heat removed by convection is higher than 

the latent heat of condensation of steam. 

Solution 

The amount of heat lost by the steam can be calculated from the equation for convective heat 

transfer as shown below: 

 convq hA T= ∆�  

where the change in temperature ∆T is given by: 

 wT T T∆ = −  

in this equation: 

 T = Temperature of steam 

 Tw = Temperature of the walls of the square channel 

t = 1 mm 

H = 1 mm 
L = 249.4 mm 
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The convective heat transfer coefficient is obtained from the definition of Nusselt number: 

 Nu

hL
N

k
=  

Solving for the convective heat transfer coefficient h and substituting the values of the length L and 

the thermal conductivity of steam we get: 

 
( )

Nu

W
________ 2.98

kN m Kh
L ________  m

⋅= =  

 
2

W
h ________

m K
=

⋅
 

The thermal conductivity value used in this equation was obtained from Table 2-305 of Perry's 

Chemical Engineers' Handbook, 8th Edition. 

Substituting this value and the heat transfer area into the equation for convq�  yields: 

 ( )( ) 2A 4 ________ m ________ m ______________ m= =  

 ( )( )2

conv 2

W
q ________ ______________ m 77 C 64.1 C

m K
= ° − °

⋅
�  

 convq _____________  W=�  

To determine if the steam is condensing in the fuel cell, we need to compare this amount of heat to 

the latent heat of vaporization, defined as follows: 

 vap fgq mh=� �  

The heat of vaporization hfg can be obtained from Table A.2-9 of Geankoplis. When condensation is 

occurring, the saturated vapor pressure is equal to the partial pressure. Hence, we will look for the 

enthalpy of vaporization at a pressure of 37.91 kPa and substitute into the equation for vapq� . 

 5

vap

kg J J
q 7.65 10 _____________ _____________

s kg kg

−  
= × − 

 
�  

 vapq _______  W=�  

Conclusion: 
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Example 4.9-1: Temperature Correction Factor for a Heat Exchanger 

The synthesis gas produced in a steam-methane reforming process for hydrogen production is being 

cooled in a heat exchanger before entering the water-gas shift reaction chamber at 846°C to 600°C. 

The cooling medium is air entering a heat exchanger at 255.3°C and leaving at 381.3°C. The syngas 

is flowing at a rate of 
kg

1322
hr

and has a heat capacity of 
J

2584
kg K⋅

. The air flow is being 

distributed through 100 commercial steel pipes with a nominal diameter of 1" Schedule number 40 

and a length of 1.2 m. Calculate the mean temperature difference in the exchanger and the overall 

heat transfer coefficent Uo for the 4 heat exchanger configurations shown in Section 4.9B of 

Geankoplis.  

Strategy 

The heat transfer rate can be obtained using the definition of sensible heat. This can be used to 

determine the overall heat transfer coefficient Uo. The mean temperature difference will depend on 

the type heat exchanger selected. 

Solution 

The heat transfer coefficient can be obtained from the equation shown below: 

 o o mq U A T= ∆�  

Solving for Uo, we get: 

 oU ___________=  

where: 

 Ao = total outer surface area of the pipes distributing the air flow, m
2
 

 ∆Tm = mean temperature difference = T lmF T∆ , K or °C 

The mean temperature difference can be obtained by multiplying a factor FT depending on the heat 

exchanger type by the log mean temperature difference, defined as: 

 
( ) ( )

( )
( )

hi co ho ci

lm

hi co

ho ci

T T T T
T

T T
ln

T T

− − −
∆ =

−

−

 

where: 

 Thi = temperature of the synthesis gas entering the heat exchanger, K or °C 
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 Tho = temperature of the synthesis gas exiting the heat exchanger, K or °C 

 Tci = temperature of the air entering the heat exchanger, K or °C 

 Tco = temperature of the air exiting the heat exchanger, K or °C 

The amount of heat removed from the synthesis gas can be calculated as follows: 

 ( )p hi hoq mC T T= −� �  

Substituting the syngas flow rate, specific heat and the inlet and outlet temperatures yields: 

 ( )
kg 1 hr J

q 1322 _______ ______ C ______ C
hr 3600 s kg K

  
= ° − °  

⋅  
�  

 q ____________ W=�  

We can now determine the log mean temperature difference as shown in the following steps: 

 
( ) ( )

( )
( )

lm

______ C ______ C ______ C ______ C
T

______ C ______ C
ln

______ C ______ C

° − ° − ° − °
∆ =

° − °

° − °

 

 lmT ________ C∆ = °  

To calculate the heat transfer area of the tubes, we need to look for the outer diameter of 1" 

commercial steel pipes in Appendix A.5 of Geankoplis. Hence, the area can be determined as shown 

below: 

 ( )( ) ( ) 2

oA DLn _________  m _____ m _____ _________ m= π = π =  

In this equation, n is the number of tubes. 

Now we will proceed to calculate the mean temperature difference for the 4 different types of heat 

exchanger. For all heat exchanger configurations we need to calculate the parameters Y and Z, 

defined as: 

 co ci

hi ci

T T ______ C 255.3 C
Y

T T ______ C 255.3 C

− ° − °
= =

− ° − °
  hi ho

co ci

T T 846 C ______ C
Z

T T ______ C 255.3 C

− ° − °
= =

− ° − °
 

 Y ______=      Z ______=  
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For these values of Y and Z, we find the factors FT in Figures 4.9-4 and 4.9-5 and use them to 

determine the mean temperature differences and overall heat transfer coefficients, given by: 

1-2 exchanger 

FT = ______ 

( )m T lmT F T ______ _______ K∆ = ∆ =  

mT 391.68 K∆ =  

 

( )o 2

o m

q _________ W
U

A T ________ m 391.68 K
= =

∆

�
 

o 2

W
U ________

m K
=

⋅
 

Cross-flow exchanger with shell fluid mixed 

FT = ______ 

( )m T lmT F T _____ _________  K∆ = ∆ =  

mT _______  K∆ =  

( )o 2

o m

q _________ W
U

A T ______ m _________  K
= =

∆

�
 

o 2

W
U ________

m K
=

⋅
 

2-4 exchanger 

FT = ___ 

( )m T lmT F T ____ _________  K∆ = ∆ =  

mT _________  K∆ =  

 

( )o 2

o m

q _________ W
U

A T 12.59m ________  K
= =

∆

�
 

o 2

W
U ________

m K
=

⋅
 

Cross-flow exchanger with fluids unmixed 

FT = _____ 

( )m T lmT F T ______ _________  K∆ = ∆ =  

mT _________  K∆ =  

( )o 2

o m

q _________ W
U

A T _________ m _________  K
= =

∆

�

 

o 2

W
U 47.10

m K
=

⋅
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Example 4.9-2: Temperature Correction Factor for a Heat Exchanger 

Synthesis gas is being produced in a steam-methane reforming process at a rate of 
kg

1322
hr

and a 

temperature of 846°C. This gas is to be cooled to a temperature of 473.86°C before entering a water-

gas shift reactor to produce additional hydrogen for fuel cells. The cooling medium is air entering at 

255.3°C, a flow rate of 
kg

6307
hr

 and a heat capacity of 
J

1058
kg K⋅

. The overall heat transfer 

coefficient is 
2

W
90

m K⋅
for a heat transfer area of 8.92 m

2
. Determine the type of flow at which the 

heat exchanger is operating and the heat transfer rate if the effectiveness is 0.45. The composition of 

the syngas is shown in the following table: 

 wt. % 

CO 20.61 

H2 7.18 

H2O 72.21 

  

Strategy 

The charts showing the effectiveness of heat exchangers operating at countercurrent flow and 

parallel flow can be used to determine the type of operation. 

Solution 

The heat transfer rate in a heat exchanger can be calculated as a function of the effectiveness ε as 

shown in the following equation: 

 ( )min Hi Ciq C T T= ε −�  

To determine the value of Cmin, we need to calculate the values of CH and CC. These parameters 

depend on the flow rate and the heat capacities of the fluids in the heat exchanger. Thus, 

 H syngas p,syngasC m C= �  

 C air p,airC m C= �  

We can see that the heat capacity of syngas is not given in the problem statement. However, we can 

use Figure A.3-3 of Geankoplis to determine the heat capacity of each individual component. The 

heat capacity of the syngas can then be determined by multiplying the mass fraction of each 

component by its corresponding heat capacity at the film temperature given by: 
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 Hi Ho
f

T T 846 C 473.86 C
T

2 2

+ ° + °
= =  

 fT ________ C= °  

 Thus, at this temperature value: 

 p,CO

J
C __________

kg K
=

⋅
 

 p,H2

J
C 14853.2

kg K
=

⋅
 

 p,H O2

J
C __________

kg K
=

⋅
 

With these individual heat capacities we can determine the heat capacity of syngas as follows: 

p,syngas CO p,CO H p,H H O p,H O2 2 2 2
C x C x C x C= + +  

 

p,syngas

J J J
C 0.2061 _________ _________ 14853.2 0.7221 _________

kg K kg K kg K

     
= + +     

⋅ ⋅ ⋅     
 

p,syngas

J
C __________

kg K
=

⋅
 

Now we can substitute the heat capacities and flow rates of air and syngas to obtain CH and CC. 

Thus, 

H

kg 1 hr J
C 1322 __________

hr 3600 s kg K

  
=   

⋅  
 

H

W
C __________

K
=  

C

kg 1 hr J
C 6307 __________

hr 3600 s kg K

  
=   

⋅  
 

C

W
C __________

K
=  
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We can see from the values of CC and CH that the smaller of these values is CH, thus Cmin = CH. 

Substituting this value into the equation for the heat transfer rate, we get: 

 ( )
W

q __________ __________ 846 C ________ C
K

 
= ° − ° 

 
�  

 q __________  kW=�  

Figure 4.9-7 of Geankoplis is showing the effectiveness of a heat exchanger operating at both 

countercurrent flow and parallel flow as function of the number of transfer units and the ratio min

max

C

C
. 

If we calculate these two values, we can look in this Figure which type of heat exchanger will yield a 

value of ________ε = . Thus, 

 min

max

W
__________

C K 0.59
WC

__________
K

= =  

 
( )2

2

min

W
90 8.92m

UA m KNTU
WC

__________
K

⋅= =  

 NTU ________=  

Conclusion: 
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Example 4.11-1: Radiation in Cylindrical Solid - Oxide Fuel Cell 

The following figure is a schematic of a cylindrical solid-oxide fuel cell. Jiang et al. [1] developed a 

thermoelectrical model to estimate the temperature at different parts of this type of fuel cell. The 

temperatures are estimated to be 1125 K for the air tube and 1200 K for the solid part (membrane 

electrode assembly). Determine the heat flux due to radiation. 

Xue et al. [2] estimated the average emissivity of the membrane electrode assembly to be 0.33. The 

air is being fed to the system through a commercial steel pipe. 

 

 

 

 

 

 

 

 

Strategy 

The heat transferred due to radiation can be estimated using the radiation equation for gray bodies 

given in Section 4.11 of Geankoplis. 

Solution 

The following equation is the definition of heat flux due to radiation: 

 ( )4 4

1 2

1 2

1
q" T T

1 1 1

 
 = σ −
 + − ε ε 

�  

where: 

 q"� = Heat flux due to radiation, 
2

W

m
 

1. Jiang, W., Fang, R., Dougal, R. A., Khan, J. A., Journal of Energy Resources Technology, 130, 2008. 

2. Xue, X., Tang, J., Sammes, N., Du, Y., Journal of Power Sources, 142, 211 − 222 (2005) 

Air Feed 

Fuel 

Fuel electrode 

Air electrode 

Electrolyte membrane 

Interconnect 
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 σ = Stefan – Boltzmann constant = 8

2 4

W
5.676 10

m K

−×
⋅

 

 Ti = Temperature of surface i, K 

 εi = Emissivity of surface i, K 

We can substitute the given quantities into the equation for heat flux to solve this problem. Hence, 

 ( ) ( )
4 4

2 4

W 1
q" _______________ ______  K 1125 K

1 1m K 1
_____ _____

 
  = −

   ⋅ + − 
 

�  

 
2

W
q" __________

m
=�  

The emissivity of steel was obtained from Table 5 − 4 of Perry's Chemical Engineers' Handbook, 8th 

Edition. 
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4.15-1 Cooling Channels in Fuel Cell Bipolar Plates 

The following figures show the top and isometric views of a fuel cell bipolar plate with 10 cooling 

channels through which air is circulating with a heat transfer coefficient of 
2

W
400

m K⋅
and a 

temperature of 10°C. The outer walls of the bipolar plates are held at a temperature of 60°C. 

Determine the steady – state heat loss in one bipolar plate using finite difference numerical methods, 

with grids 1 mm x 1 mm. The bipolar plates are made of 304 stainless steel. 

 

 

 

 

 

Strategy 

To determine the amount of heat removed we need to determine the temperatures at the different 

nodes, using the Equations in Section 4.15B of Geankoplis. 

Solution 

Since the area surrounding the channel is symmetrical, we can calculate it for one channel and 

multiply it by the number of times this area is repeated in the whole bipolar plate. If we zoom into 

the first channel from the left edge of the bipolar plate: 

 

 

 

 

The shaded areas in this figure indicate the sets of nodes that will be repeated along the bipolar plate.  

Set of Nodes at the Edges of the Bipolar Plate 

We will start by using the finite difference method on the edges of the bipolar plate. For a grid of 1 

mm by 1 mm, the following nodes will be used: 

         

         

         

   

0.15 m 

 

          
6 mm 

108 mm 

8 mm 8 mm 

2 mm x 2 mm 

channels 

 

T2,1 T2,2 T2,3 T2,4 T2,5 T2,6 T2,7 T2,8 T2,9 T2,10 

T3,1 T3,2 T3,3 T3,4 T3,5 T3,6 T3,7 T3,8 T3,9 T3,10 

T4,1 T4,2 T4,3 T4,4 T4,5 T4,6 T4,7 T4,8 T4,9 

T1,1 T1,2 T1,3 T1,4 T1,5 T1,6 T1,7 T1,8 T1,9 T1,10 

2

W
h 400

m K
=

⋅
 

T 10 C∞ = °  
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The outer nodes are kept at a temperature of 60°C. Thus: 

 T1,1 = T1,2 = T1,3 = T1,4 = T1,5 = T1,6 = T1,7 = T1,8 = T1,9 = T1,10 = T2,1 = T3,1 = T4,1 = _____°C 

For the first calculation, we will assume the following temperature values (in °C) for the rest of the 

nodes: 

 

 

 

 

 

 

 

 

We can obtain the first temperature estimation for the interior nodes using Equation 4.15-11 from 

Geankoplis: 

 

 n,m n 1,m n 1,m n,m 1 n,m 1 n,mq T T T T 4T− + − += + + + −  

 

This equation is applicable to the nodes highlighted below. 

 

 

 

 

To start the calculations, we will select node T2,2.  We can apply this equation to get: 

 2,2 1,2 2,1 2,2q T ______ T ______ 4T= + + + −  

 ( )2,2q ____ 50 ____ 55 4 ____ ____= + + + − =  

T1,1 T1,2 T1,3 T1,4 T1,5 T1,6 T1,7 T1,8 T1,9 T1,10 

T2,1 T2,2 T2,3 T2,4 T2,5 T2,6 T2,7 T2,8 T2,9 T2,10 

T3,1 T3,2 T3,3 T3,4 T3,5 T3,6 T3,7 T3,8 T3,9 T3,10 

T4,1 T4,2 T4,3 T4,4 T4,5 T4,6 T4,7 T4,8 T4,9 

60 60 60 60 60 60 60 60 60 60 

60 55 55 55 55 55 55 55 55 35 

60 50 50 50 50 50 50 50 50 10 

60 45 40 35 30 25 20 15 10 

T1,1 T1,2 T1,3 T1,4 T1,5 T1,6 T1,7 T1,8 T1,9 T1,10 

T2,1 T2,2 T2,3 T2,4 T2,5 T2,6 T2,7 T2,8 T2,9 T2,10 

T3,1 T3,2 T3,3 T3,4 T3,5 T3,6 T3,7 T3,8 T3,9 T3,10 

T4,1 T4,2 T4,3 T4,4 T4,5 T4,6 T4,7 T4,8 T4,9 

Tn,m Tn,m – 1 

Tn + 1,m 

Tn – 1,m 

Tn,m + 1 
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Since the heat q2,2 is not equal to zero, the value of T2,2 we assumed is not the temperature at steady 

state. Setting the value of q2,2 to zero we calculate a new value of T2,2 as shown below: 

1,2 2,1

2,2

T ____ T ____
T

4

+ + +
=  

2,2

____ C 50 C ____ C ____ C
T _________ C

4

° + ° + ° + °
= = °  

This new value of T2,2 will be used to calculate the temperatures at other nodes. Thus, for q2,3: 

 2,3 3,3 2,4q ____ T ____ T _______ 60 50 ________ 55 _______ _______= + + + − = + + + − =  

Setting q3,2 = 0 and solving for T3,2 yields: 

 2,3

60 50 _______ 55
T _______ C

4

+ + +
= = °  

We can repeat the same procedure for all the interior nodes. The first iteration will yield the 

following temperature values: 

  

 

 

 

 

Note that we have not done any calculations for the edge nodes. This is because we need additional 

equations for these nodes, described in the following sections. 

Section 4.15B-3 of Geankoplis and Section 4.5-3 of Incropera and DeWitt [3] gives the following 

equations for different boundary conditions. 

For nodes T2,10, T4,2, T4,3, T4,4, T4,5, T4,6, T4,7, and T4,8, an equation with an adiabatic boundary is 

needed [3]. 

  

 

 

3. Incropera, F. P., DeWitt, D. P., Fundamentals of Heat and Mass Transfer, Fourth Edition, John Wiley & Sons, New 

York (1996). 

 

10 

______ 

60 60 60 60 

60 ______ ______ 

60 

60 45 40 35 

60 60 60 

______ ______ ______ 

30 25 20 

60 60 60 

______ ______ 55 

10 

15 

______ ______ ______ ______ ______ ______ ______ 50 
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This equation is applied for nodes with heat conduction from three adjacent nodes with an adjoining 

adiabat, as shown in the following figures: 

 

n,m n,m 1 n 1,m n 1,m n,mq 2T T T 4T− − += + + −  

  

 

 n,m n,m 1 n,m 1q 2 _______ T T 4 ______− += + + −  

 

Setting qn,m = 0 in these equations, the temperatures are given by: 

  

n,m 1 n 1,m

n,m

2T ______ T
T

___

− ++ +
=

−
 

  

n,m 1 n,m 1

n,m

2 ______ T T
T

____

− ++ +
=  

Applying this equation to node T4,2 (with q4,2 = 0), we have: 

 

 

( )4,1

4,2

2 _____ T _____ 2 ______ C 60 C 40 C
T _____ C

___ ___

+ + ° + ° + °
= = = °  

 

 

 

 

In a similar way, we can find the first estimate of the temperatures at rest of the nodes that follow 

this equation, highlighted in the grid below: 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

T1,1 T1,2 T1,3 T1,4 T1,5 T1,6 T1,7 T1,8 T1,9 T1,10 

T2,1 T2,2 T2,3 T2,4 T2,5 T2,6 T2,7 T2,8 T2,9 T2,10 

T3,1 T3,2 T3,3 T3,4 T3,5 T3,6 T3,7 T3,8 T3,9 T3,10 

T4,1 T4,2 T4,3 T4,4 T4,5 T4,6 T4,7 T4,8 T4,9 

Tn,m 

Tn – 1,m 

Tn + 1,m 

Tn,m – 1 

Adiabat 

Tn,m 

Tn – 1,m 

Tn,m + 1 Tn,m – 1 
Adiabat 

Tn,m 

Tn – 1,m 

Tn + 1,m 

Tn,m – 1 

Adiabat 

Tn,m 

Tn – 1,m 

Tn,m + 1 Tn,m – 1 
Adiabat 
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To finish the first temperature estimation, we need to determine 3 more nodes: T3,9, T3,10 and T4,9. In 

nodes T4,9 and T3,10, heat transfer is occurring at an insulated boundary with convection from internal 

flow and conduction from the two adjacent nodes. The following equation (at steady state) can be 

used for this case, also given in page 191 of Incropera [3]. The thermal conductivity of stainless steel 

304 was obtained from Appendix A.3 of Geankoplis. 

 
n,m 1 n 1,m

n,m

h x
T T T

k
T

h x
2

k

− − ∞

∆ 
+ +  

 =
∆ 

+ 
 

 

 

Substituting the corresponding temperatures into this equation yields: 

 

( )
( )

( )

2

3,9

3,10

2

W
400 ______  m

m K____ C 45 C 10 C
h x W

T _____ T ______
k m KT ______ C

h x W
2 400 ______  m

k m K2
W

______
m K

∞

 
 ⋅° + ° + ° ∆ 

+ +   
   ⋅ = = = °

∆   
+   ⋅  + 

 
 ⋅ 

 

Now for T4,9 we have: 

( )
( )

( )

2

4,8 3,9

4,9

2

W
400 ______  m

m K31.3 C ____ C 10 C
h x W

T T T ______
k m KT ______ C

h x W
2 400 ______  m

k m K2
W

______
m K

∞

 
 ⋅° + ° + ° ∆ 

+ +   
   ⋅ = = = °
∆   

+   ⋅  + 
 
 ⋅ 

 

10 

______ 

60 60 60 60 

60 ______ ______ 

60 

60 

60 60 60 

______ ______ ______ 

60 60 60 

______ ______ ______ 

10 ______ ______ ______ ______ ______ ______ ______ 50 

______ ______ ______ ______ ______ ______ ______ 

Tn,m 

Tn – 1,m 

Tn,m – 1 

T∞, h 

Adiabat 
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For node T3,9, we can use Equation 4.15-19 of Geankoplis, which corresponds to an interior corner 

with convection at the boundary: 

 

( )n 1,m n,m 1 n,m 1 n 1,m

n,m

1 h x
T T T T T

2 k
T

h x
3

k

+ + − − ∞

∆ 
+ + + +  

 =
∆ 

+ 
 

 

 

( )4,9 3,8

3,9

1 h x
T ______ T ______ T

2 k
T

h x
3

k

∞

∆ 
+ + + +  

 =
∆ 

+ 
 

 

 

( )
( )

( )

( )

2

3,9

2

W
400 ______  m

1 m K______ C ______ C 40.56 C 55 C 10 C
W2

______
m KT

W
400 ______  m

m K3
W

______
m K

 
 ⋅° + ° + ° + ° + ° 
 
 ⋅ =

 
 ⋅+ 
 
 ⋅ 

 

 3,9T ______ C= °  

The following grid shows the temperatures obtained after the first iteration. The highlighted 

temperatures are the values we just calculated. 

 

 

 

 

 

After completing the first calculation across the grid, we can start a new approximation using the 

new temperature values. Hence, starting with q2,2 and T2,2, we have: 

 2,2 1,2 3,2 2,1 2,3 2,2q T T T T 4T= + + + −  

 ( )2,2q 60 52.81 60 ______ 4 ______ ______= + + + − =  

 

______ 

______ 

60 60 60 

60 ______ ______ 

60 

60 

60 60 60 

______ ______ ______ 

60 60 60 

______ ______ ______ 

______ ______ ______ ______ ______ ______ ______ ______ ______ 

______ ______ ______ ______ ______ ______ ______ 

Tn,m Tn,m – 1  

Tn – 1,m 

T∞, h 

Tn,m+1 

Tn + 1,m 

60 
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Setting the value of q2,2 to zero we calculate a new value of T2,2 as follows: 

2,2

60 _______ 60 _______
T _______ C

4

+ + +
= = °  

The same procedure used for the first approximation is repeated until the assumed and new 

temperatures are similar. In this case we will select a tolerance of 0.01.  

This numerical problem can also be solved using computer software such as Excel or Matlab. The 

final temperature values in the set of nodes for the edges of the bipolar plate are shown below: 

 

 

 

 

 

 

To calculate the total heat lost by the bipolar plate we use Fourier’s Law of Heat Conduction for the 

interior and exterior nodes. 

 ( )
T T

q kA k xL kL T
x x

∆ ∆
= = ∆ = ∆

∆ ∆
 

This amount must be multiplied by 4, since this set of nodes is repeated 4 times in the fuel cell 

bipolar plate (4 external corners), as shown in the shaded areas below: 

 

 

 

 

 

 

 

 

          

______ 

 59.98 

60 60 60 

60 ______  ______ 

60 

60 

60 60 60 

______  59.88 ______ 

60 60  60 

______  59.55  ______ 

  58.88 ______ ______   59.93 ______ ______   59.65 ______ ______ 

______  59.98 ______   59.86 ______ ______   59.30 
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The total heat conducted is the sum of the heat equations applied for all the interior temperature 

differences. The following figure illustrates the nodes used for the heat loss calculation. The nodes 

adjacent to the shaded squares were used for determining qinterior, with a direction for heat flow 

indicated by the arrows. The heat flux for nodes with an adjoining adiabat has to be multiplied by 

1

2
because of symmetry. 

 

 

 

 

Hence, for the interior nodes we have: 

 ( ) ( ) ( ) ( )interior,corner 3,10 2,10 4,9 4,8 q 4kL 0.5 T T 0.5 T T _____ _____ _____ _____ = − + − + − + −   

 
( ) ( ) ( )

( ) ( )

interior,corner

W
q 4 16.3 _____  m 0.5 _____ 59.50 0.5 58.78 ______

m K

                  ______ 59.55 59.02 ______ C

 
= − + −  ⋅ 

+ − + − °

 

 interior,cornerq _______ W=  

To determine qexterior, we substituted the temperature differences in the nodes adjacent to the shaded 

squares in the following figure. The direction of heat flow is indicated by the arrows , with a The 

heat flux for nodes with an adjoining adiabat has to be multiplied by 
1

2
because of symmetry. 

        

        

        

 

 

 

         

         

         

Symmetry adiabat 

Symmetry adiabat 

T2,10 T2,8 T2,7 T2,6 T2,5 T2,4 T2,3 T2,2 T2,9 
T2,1 

T1,10 T1,8 T1,7 T1,6 T1,5 T1,4 T1,3 T1,2 T1,9 T1,1 

T3,1 

T4,1 

T3,2 

T4,2 

Symmetry adiabat 

Symmetry adiabat 

T4,9 T4,8 

T3,10 T3,9 

T2,10 

T3,8 

T2,9 T2,8 
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Applying Fourier’s law to the exterior nodes, the heat transfer rate will be given by: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

exterior,corner 1,10 4,2 1,9 2,8

1,7 2,6 1,5 2,4 1,4 2,3 1,3

2,2 1,2 2,2 2,1 3,2 3,1

 q 4kL 0.5 _____ T 0.5 T _____ _____ T T _____

                   _____ T T _____ _____ T T T T T

                   T T T T T T

= − + − + − + −

+ − + − + − + − + −

+ − + − + − 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

exterior,corner

W
 q 4 16.3 ______ m 0.5 ______ 60 0.5 ______ 60 ______ 60

m K

             ______ 60 ______ 60 ______ 60 ______ 60 ______ 60

            ______ 60 ______ 60 ______ 60 ______ 60 C

 
= − + − + −  ⋅ 

+ − + − + − + − + −

+ − + − + − + − °
 

 exterior,corner q ___________ W=  

Finding the same value as qinterior, corner proves that this system is at steady – state. The heat transfer 

rate for this set of nodes will be obtained from the average between the heat transfer for the interior 

and exterior nodes. 

 corners q __________  W=  

Set of nodes between cooling channels 

We need to establish a different nodal network for the spaces between cooling channels. The set of 

nodes for a 1 mm x 1 mm grid is shown below: 

 

     

     

     

 

The same equations used for calculating the temperatures at the exterior corners of the bipolar plates 

will be used again for this set of nodes. The only exception is for node T4,16, which represents the 

case for heat conduction with two adjoining adiabats. Thus, for this node (setting q4,16 = 0) we have: 

 
n,m 1 n 1,m

n,m

T T
T

2

− −+
=  

4,15

4,16

______ T
T

2

+
=  

T2,11 T2,12 T2,13 T2,14 T2,15 

T3,11 T3,12 T3,13 T3,14 T3,15 

T1,11 T1,12 T1,13 T1,14 T1,15 

T4,12 T4,13 T4,14 T4,15 

T1,16 

T2,16 

T3,16 

T4,16

Tn,m 

Tn – 1,m 

Tn,m – 1 

Adiabats 
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Following the same procedure described for the first set of nodes in this problem (for exterior 

corners), or using computer software, we can find the temperatures for the interior nodes to be: 

  

 

 

 

Now we can proceed to calculate the heat transfer rate using Fourier’s law for the temperature 

difference at the interior and exterior nodes. If we look at the top view of the bipolar plates, we can 

see that this set of nodes is repeated 4 times in the space between two channels as illustrated below. 

 

 

 

 

Since there are 10 channels, there will be 9 spaces between the cooling channels (see figure below). 

Therefore the heat transfer rate in a single set of nodes must be multiplied by 36 to obtain the heat 

transfer in the whole bipolar plate. 

 

 

 

In a similar way as we did for the set of nodes for the corners of the bipolar plate, we can determine 

the heat flow for the set of nodes including the spaces between cooling channels. Thus, 

( ) ( ) ( ) ( )interior,middle 3,11 2,11 3,12 3,13q 36kL 0.5 T T 0.5 _____ _____ _____ _____ T T = − + − + − + −   

( ) ( ) ( )

( ) ( )

interior,middle

W
q 36 16.3 _______  m 0.5 _______ 59.49 0.5 _______ 59.26

m K

                  58.99 _______ 58.99 _______ C

 
= − + −  ⋅ 

+ − + − °

 

interior,middleq __________  W=  

Similarly for exterior nodes, we have: 

T1,11 T1,12 T1,13 T1,14 T1,15 T1,16 

T2,11 T2,12 T2,13 T2,14 T2,15 T2,16 

T3,11 T3,12 T3,13 T3,14 T3,15 T3,16 

T4,12 T4,13 T4,14 T4,15 T4,16 

 

          

60 60 60 60 60 60 

  59.49 

______ 

______ 

  58.99 

______ 

______ 

 59.78 

______ 

______ 

  59.71 

______ 

______ 

______   59.26 ______ ______   59.71 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

exterior,middle 2,12 1,12

2,14 1,14

W
q 36 16.3 _______ m 0.5 _____ _____ 0.5 _____ _____ T T

m K

                    _____ _____ T T _____ _____ _____ _____

                    _____ _____

  = − + − + −  ⋅ 

+ − + − + − + −

+ − 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

exterior,middle

W
q 36 16.3 0.15 m 0.5 59.49 60 0.5 _______ 59.71 _______ 60

m K

                    _______ 60 59.78 60 _______ 60 _______ _______

                    59.71 _______ C

 
= − + − + −  ⋅ 

+ − + − + − + −

+ − °

 

exterior,middleq ________ W=  

 

Taking the average of interior,middleq  and exterior,middleq we get: 

 middle

________ W ________  W
q

2

−
=  

 middleq ________ W=  

To obtain the overall heat transfer in the bipolar plate we need to add cornersq and middleq : 

 q ________  W ________ W= −  

 q _________ W=  


