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Chapter 3          

Principles of Momentum Transfer and Applications 

Chapter 3 introduces students to the principles for calculation of power and efficiency of equipment 

such as compressors, pumps and fans. The following problem modules illustrate the application of 

this type of equipment to processes for producing hydrogen for fuel cells as well as the derivation of 

equations for different flow conditions from the general transport equations.              

3.1-3 Surface Area in Packed Bed of Cylinders  

3.1-4 Pressure Drop and Flow of Gases in Packed Bed 

3.2-1 Flow Measurement using a Pitot Tube 

3.3-1 NPSH Available for Pump 

3.3-2 Calculation of Brake Horsepower of a Pump 

3.3-3 Brake-kW Power of a Centrifugal Fan 

3.3-4 Compression of Methane 

3.8-3 Laminar Flow in a Circular Tube 

3.11-1 Dimensionless Groups 
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Example 3.1-3: Surface Area in Packed Bed of Cylinders 

Natural gas has been proposed as a source of hydrogen for fuel cell vehicle applications because of 

the existing infrastructure. In a process known as steam reforming, natural gas and steam are reacted 

into mostly carbon monoxide and hydrogen with some carbon dioxide also produced. There is also 

excess water in the reformate stream.  

A water gas shift reactor can be used to convert some of the remaining carbon monoxide into 

hydrogen according to the reaction: 

CO + H2O       H2 + CO2 

The following figure shows an axisymmetric view of an annular water gas shift reactor which is 8 

cm high. In the outer (annular) region, an iron chromium oxide catalyst is present to carry out the 

water gas shift reaction. A 20 µm thick palladium membrane separates the reaction (outer) zone 

from the separation (inner) zone.  

                

Cylinders of iron chromium oxide catalyst with diameter and length of 0.1 cm are forming a packed 

bed in the reaction zones with a bulk density of 
3

lb
39.75

ft
. Determine the void fraction ε, the 

effective diameter of the particles Dp and the hydraulic radius rH for the flow through the packed bed 

if the density of the catalyst is 
3

lb
76

ft
. 

Strategy 

The equations defining the parameters ε, Dp and rH can be used for solving this problem. 

Separation Zone 

Reaction Zones 

Gas Flows In 

Annular Membrane Reactor : Top View (Left)  and Side View (Right) 
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Solution 

First we will calculate the void fraction ε of the packed bed, defined by the following equation: 

 
volume of voids in bed

total volume of bed
ε =  

For simplicity, we will select a basis of 1 ft
3
 of packed bed. Thus, we can calculate the mass of the 

bed to be: 

 3

3bed

lb
m 1 ft _________ ___________  lb

ft

 
= = 

 
 

This mass of packed bed can be used to calculate the volume of the solid cylinders of catalyst, as 

shown in the following calculation: 

 3

catalyst

3

_________  lb
V _____________  ft

lb
76

ft

= =  

Substituting this volume and the basis of 1 ft
3
 of packed bed into the equation for ε yields: 

 
3 3

3

1 ft ___________ ft

______ ft

−
ε =  

 _________ε =  

For non-spherical particles, the effective diameter is given by the following equation: 

 p

V

6
D

a
=  

where 
V

a  is the specific area, given by the ratio of the surface area of the catalyst particle to the 

volume of the particle. Thus, 
V

a  is given by: 

 
p

2V

p

_______
2 ___________

S _____
a

DV
______

4

 π
+ π 

 = =
π

 

In this equation, the first term in the numerator represents the area of the ends of the cylinder, while 

the second term is accounting for the area of the walls of the cylinder. We can substitute the values 

of D and L into this equation to determine the specific area 
V

a as follows: 
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( )

( )
( )

2

p

2V

p

__________
2 ________

S ______ 1 _________  cm
a 60

V cm 1 ft0.1 cm
__________

4

 π
+ π 

  = = =  
 π

 

1

V
a 1828.8 ft−=  

Now we can calculate the effective diameter to be: 

 
p 1

6
D

1828.8 ft−
=  

 pD ____________ ft=  

The hydraulic radius of an object is defined as: 

 
H

r
a

ε
=  

where a is the ratio of the wetted surface of the particles to the volume of the packed bed. The 

following equation can be used for calculation of a: 

 ( )
V

a a 1= − ε  

The values of the void fraction and the specific area of the catalyst particles can be entered into this 

equation to give: 

 ( )1a 1828.8 ft 1 __________−= −  

 1a ___________ ft−=  

Therefore, the hydraulic radius can now be calculated to yield: 

H 1

__________
r

__________  ft−
=  

4

H
r 4.98 10 ft−= ×  

 

 

 



Supplemental Material for Transport Process and Separation Process Principles 

Daniel López Gaxiola         5     Student View 

Jason M. Keith 

Example 3.1-4: Pressure Drop and Flow of Gases in Packed Bed 

A water-gas shift reactor in a distributed-scale hydrogen plant is producing hydrogen at a rate of 

lb
65.2

h
. The reactor consists of a tubular packed bed of 5.25 cm diameter with 31.4 kg of a catalyst 

with a density of 
3

lb
76

ft
.  

The void fraction of the bed is 0.57 and the spherical catalyst pellets have a diameter of 0.1 cm. 

Determine the pressure drop of the reacting synthesis gas in the packed bed. The synthesis gas is 

entering the reactor at a pressure of 2066 kPa and has the following properties: 

 
lb

0.048
ft h

µ =
⋅

 

 
30

lb
0.356

ft
ρ =  

The differential form of the pressure drop in a packed bed reactor is given by the Ergun equation: 

3

c p p

dP G 1 150(1 )
1.75G

dz g D D

  − φ − φ µ
= − +   ρ φ  

 

The solution to this differential equation is given by: 

 
1/2

o

P
(1 W)

P
= − α  

where: 

o

c c o

2

A (1 ) P

β
α =

− φ ρ
   

o 3

o c p p

G(1 ) 150(1 )
1.75G

g D D

 − φ − φ µ
β = + 

ρ φ   
  

The first term in the brackets in the equation for βo is dominant for laminar flow and the second term 

is dominant for turbulent flow. In these equations, the following notation and units are used: 

P = Pressure 
2

lb

ft

 
 
 

 

φ = Void fraction (dimensionless) 
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gc = Gravitational constant = 8

2

f

lb ft
4.17  10

h lb

⋅
×

⋅
 

Dp = Diameter of particle in the bed (ft) 

µ = Viscosity of gas 
lb

ft h

 
 

⋅ 
 

ρ0 = Gas density 
3

lb

ft

 
 
 

 

ρc = Density of the catalyst
3

lb

ft

 
 
 

 

m
G

A
=
�

= Mass flux of synthesis gas 
2

lb

ft h

 
 

⋅ 
 

m� = Mass flow rate of synthesis gas 
lb

h

 
 
 

 

υ= Velocity of the gas in the reactor
lb

h

 
 
 

 

z = Distance down packed bed (ft) 

A = Cross – sectional area of the reactor (ft
2
) 

W = Mass of catalyst in the reactor (lb) 

Strategy 

The Ergun equation can be used for calculating the pressure at the outlet of the packed bed. 

Solution 

First we determine the value of βo. All of the terms in the problem statement are in the appropriate 

units except for the particle diameter. We have: 

p

1 ft
D 0.1cm ______________ ft

30.48cm

 
= = 

 
 

Another value we need to calculate to calculate βo is the mass flux of synthesis gas G, given by: 

m
G

A
=
�
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Where the cross sectional area is obtained as follows: 

 
( )

2
2

2

2

________  cm 1 ft
A ___________  ft

4 ____________  cm

π  
= = 

 
 

Entering this value and the mass flow rate into the equation for the mass flux G we get: 

 
2 2

lb
65.2

lbhG ______________
____________  ft ft h

= =
⋅

 

Substituting this and the other values into the equation for 
o

β : 

o 3

o c p p

G(1 ) 150(1 )
1.75G

g D D

 − φ − φ µ
β = + 

ρ φ   

( ) ( )
o

2

3

3 2

f

2

lblb 150(1 0.57) 0.048_______________ (1 0.57)
ft hft h

______________ ftlb lb ft
0.356 _______________ ____________ ft 0.57

ft h lb

lb
1.75 _______________

ft h

  
−−   ⋅ ⋅ β =

  ⋅
    ⋅ 

 
+  ⋅ 

 

f
o 3

lb
77.91

ft
β =   

Note that this term has units of pressure f

2

lb

ft

 
 
 

per unit length (ft). It is also noted that the second 

term in the brackets is dominant, suggesting turbulent flow in this industrial reactor.  

Now we need to determine the value of αW which is needed in the formula for the pressure drop. 

We first need to obtain the feed pressure, and catalyst weight in the appropriate units.  

The feed pressure in f

2

lb

ft
is: 

f

2
f

o 2

lb
_________ lb___________inP 2066 kPa _____________

___________  kPa ___________ ft

 
  

= =  
   

 
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The catalyst weight W in lbm is: 

1 lb
W 31.4 kg ___________ lb

0.454kg

 
= = 

 
 

Thus, 

( )f

3

o

2c c o f

3 2

lb
2 77.91 _________ lb

ft2 W
W ________

lbA (1 ) P lb
_____________  ft (1 0.57) 76 _______________

ft ft

 
 

β  α = = =
− φ ρ   

−   
  

 

The exit pressure can be determined by entering this value into the equation for the pressure ratio
o

P

P
: 

1/2

o

P
(1 W)

P
= − α  

Substituting the values of Wα  and the pressure at the entrance of the packed bed P0 yields: 

1/2

f

2

P
(________________)

lb
____________

ft

=
 
 
 

 

Solving for the pressure at the outlet P, we get: 

 1/2 f f

2 2

lb lb
P (________________) _____________ 35373

ft ft

 
= = 

 
 

Hence, the pressure drop is given by: 

 f f

2 20

lb lb ___________
P P P 35373 ___________

ft ft ___________

  
∆ = − = −   

  
 

 P ___________  psi∆ =  
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Example 3.2-1: Flow Measurement using a Pitot Tube 

A Pitot Tube is used for measuring the flow in a circular pipe. To determine the flow of hydrogen at 

room temperature to a proton-exchange membrane fuel cell, a Pitot tube with a coefficient of 0.84 is 

used in a pipe with a diameter of 1”. The static-pressure of hydrogen is measured to be 12.34 mm of 

Hg above atmospheric pressure. 

Determine the maximum and average velocities and flow rates of hydrogen in the pipe if the reading 

on the manometer is 0.022 in of Hg. The following figure shows the diagram of Pitot Tube for this 

problem. 

 

 

 

 

 

Strategy 

To solve this problem we need to obtain the velocity value from Bernoulli Equation applied to a 

Pitot Tube. 

Solution 

The Bernoulli equation applied to a Pitot Tube is given by: 

 
( )

p1

2 ________________
C

___________
υ =  

where Cp is the value of the Pitot tube coefficient. 

The viscosity of hydrogen can be obtained from Appendix A.3 of Geankoplis to be. 

 
kg

_________________
m s

µ =
⋅

 

The density can be calculated using Ideal Gas equation of state as shown in the following steps: 

 

( )

( )
H  @ P = 1 atm

5
2

kg
_____  atm _________

________ mol

RT _____ _____
8.206 10 298.15 K

______ _____

−

 
 
 ρ = =

 ⋅
× 

⋅ 

 

H2 to Fuel Cell 

∆h = 0.022 in Hg 

1 2 
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3H  @ P = 1 atm

2

kg
_________

m
ρ =  

First we need to convert the manometric static pressure to absolute pressure. To do this, we will use 

the density of mercury as 
3

kg
13533.61

m
, obtained from Table 2-31 of Perry’s Chemical Engineers’ 

Handbook, 8
th

 Edition. Thus, 

 ( )Hgstatic H  @ P = 1 atm
2

P gh∆ = ρ − ρ  

 ( )
3 3 2static

kg kg m
P 13533.61 _________ ___________ ____________  m Hg

m m s

  
∆ = −  

  
 

 
static

P 1638 Pa∆ =  

We can add this value to the atmospheric pressure of 101325 Pa to get the absolute pressure to be 

______________ Pa. Since the density of hydrogen was calculated at atmospheric pressure, we need 

to correct the density value for the actual pressure of hydrogen in the pipe. This can be done by 

multiplying the density at 1 atm of pressure by the pressure ratio. Therefore, 

 
H 3H  @ P = 1 atm

atm
2 2

P kg __________  Pa
_________

P m 101325 Pa

   
ρ = ρ =   

  
 

 
H 3

2

kg
__________

m
ρ =  

Now we can calculate the pressure difference using the change in the height of mercury in the 

manometer as shown below: 

( )Hg H
2

P g h∆ = ρ − ρ ∆  

( )
3 3 2

kg kg m 0.0254 m Hg
P 13533.61 __________ ____________ __________  in Hg

m m s 1 in Hg

   
∆ = −    

    
 

P __________  Pa∆ =  

Substituting this pressure drop into the equation for the velocity of hydrogen in the tube yields: 

 
( )

1

3

2 __________  Pa
0.84

kg
__________

m

υ =  
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1

m
__________

s
υ =  

Since the point 1 in the tube is at the center of the tube, where the velocity reaches its maximum 

value, the velocity we calculated is the maximum velocity. 

 
max

m
__________

s
υ =  

The average velocity of a fluid in a pipe can be estimated using Figure 2.10-2 of Geankoplis as a 

function of Reynolds number. The value of Reynolds number using the maximum velocity for this 

problem is given by: 

 

( ) 3
max H

2

0.0254 m m kg
1 in ___________ ___________D 1 in s m

Re
kg

_______________
m s

   
   υ ρ
   = =

µ

⋅

 

 Re 8507=  

Locating this value in Figure 2.10-2 we can estimate the ratio of the average velocity to the 

maximum velocity to be: 

 av

max

__________
υ

≈
υ

 

Solving for the average velocity and entering the value of the maximum velocity into this equation 

we get: 

 ( )av max

m
___________ ___________ ___________

s

 
υ ≈ υ ≈  

 
 

 
av

m
27

s
υ ≈  

To calculate the average and maximum flow rates of hydrogen we need to multiply the 

corresponding velocity value by the cross-sectional area of the pipe. The area of the pipe is 

calculated as shown below: 

 
( )

2
2 2

2

2

1 inD _______________ m
A _______________ m

4 4 1 in

ππ  
= = = 

 
 

Multiplying the cross-sectional area by both velocity values we get: 
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 2

av

m
V _______________ m 27

s

 
=  

 
�  

 
3

av

m
V _______________

s
=�  

 2

max

m
V _______________ m ________

s

 
=  

 
�  

 
3

max

m
V _______________

s
=�  
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Example 3.3-1: NPSH Available for Pump 

Water at a temperature of 25°C is being pumped to a boiler in a distributed-scale steam-methane 

reforming plant. The water is entering the boiler through a commercial steel pipe with a diameter of 

0.1 m and a length of 25 m. The estimated friction factor for the flow conditions in this process is 

estimated to be 0.0045. 

Determine the available net positive suction head (NPSH) of the pump if the velocity of the water in 

the pipe is of 
m

2.3
s

 

Strategy 

This problem can be solved using the equation for the NPSH as a function of the pressure and 

thermodynamic properties of the fluid in the pipe. 

Solution 

The following equation shows the relation between the NPSH available and the conditions in the 

system: 

 ( )
2

vp1

A 1

P P
g NPSH gz F

2

− υ
= + − −

ρ
∑  

where: 

 g = Acceleration due to gravitational force = 
2

m
9.80665

s
 

 P1 = Pressure of the fluid before entering the pump (Pa) 

 Pvp = Saturation pressure of fluid at the process temperature (Pa) 

 ρ = Density of fluid 
3

kg

m

 
 
 

 

z1 = Difference in height between the pump and the point at pressure P1 (m) 

υ = Velocity of the fluid 
m

s

 
 
 

 

F∑ = Friction loss in suction line to pump 
J

kg

 
 
 

 

Since there is no difference in the height between the pipe and the pump, the term 
1

gz in the equation 

for g(NSPH)A is neglected in this problem. Thus, 
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 ( )
2

vp1

A

P P
g NPSH F

2

− υ
= − −

ρ
∑  

The density and saturation pressure of water at 25 °C can be found in Geankoplis in Tables A.2-3 

and A.2-9 respectively: 

3

kg
_____________

m
ρ =   

 
vp

P __________  Pa=  

The only remaining unknown value in the equation for NSPHA is the friction loss, which can be 

calculated using the following equation: 

 
2L

F 4f
D 2

∆ υ
=  

Substituting the corresponding values into this equation, we get: 

 ( )

2

m
2.3

25 m Js
F 4 ___________ ________

0.1 m 2 kg

 
 
 = =∑  

Now we can enter all the known quantities into the equation for NSPH to yield: 

 ( )
( ) ( )

2

2 A

3

m
2.3

101325 Pa __________  Pam Js
9.80665 NPSH 11.9

kgs 2 kg
__________

m

 
 −   = − − 

 
 

Solving for the NPSHA: 

 ( )
( ) ( )

2

A

3 2

m
2.3

101325 Pa __________  Pa J 1s
NPSH 11.9

kg m2 kg
__________ 9.80665

m s

  
  −   = − −
   

     

 

 ( )
A

NPSH _________  m=  



Supplemental Material for Transport Process and Separation Process Principles 

Daniel López Gaxiola         15     Student View 

Jason M. Keith 

Example 3.3-2: Calculation of Brake Horsepower of a Pump 

Determine the brake horsepower of the pump from Example 3.3-1 operating at a flow rate of  

kg
683.1

hr
 for feeding water to a boiler in a Steam-Methane reforming plant. Assume the 

characteristic curves of this pump are described by Figure 3.3-3 of Geankoplis.  

Strategy 

The brake horsepower of the pump described in this example can be calculated using the mass flow 

rate of fluid and the work performed by the pump. 

Solution 

The brake hp of a pump can be calculated using Equation 3.3-2 of Geankoplis: 

 S
W m

brake hp
550

−
=

η

�

 

where: 

 WS = Work performed by the pump f
ft lb

lb

⋅ 
 
 

 

 m� = Mass flow rate of fluid 
lb

s

 
 
 

 

 η= Efficiency of the pump 

First we need to calculate the work performed by the pump, defined as follows: 

 
S

C

g
W H

g
= −  

In this equation, the value of the head of fluid H is unknown. However, it can be read from the 

characteristic curves of the pump, shown in Figure 3.3-3. The volumetric flow rate of water required 

for using Figure 3.3-3 is calculated by multiplying the mass flow rate by the density of water at the 

process conditions as shown below: 

 
3

3 3

kg ________
683.1

hr ________m
V

kg ________________ m
997.08

m ft

 
 
 = =

ρ  
 
 

�
�  
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3

3

ft ___________  gal gal
V ___________ ___________

min 1 ft min

 
= = 

 
�  

With this volumetric flow rate, we can estimate the head of fluid and the efficiency of the pump 

from Figure 3.3-3 to be: 

 H ___________  ft≈  

 ___________η ≈  

We can substitute the head of fluid value into the equation for the work WS to yield: 

 
2

S

2

f

ft
_____________

hrW ________  ft
lb ft

_____________
hr lb

 
 
 = −

⋅ 
 ⋅ 

 

 f

S

lb ft
W ___________  

lb

⋅
=  

The negative value of the work WS indicates that the fluid is performing work over the pump. Now 

we can enter the values we calculated into the equation for the brake horsepower of the pump to get: 

 
( )

f
lb ft kg _________ _________

___________  683.1
lb hr _________ _________

brake hp
550 _________

⋅     
−     

     =  

 brake hp ________  hp=  
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Example 3.3-3: Brake-kW Power of a Centrifugal Fan 

Air at a flow rate of 
3m

2.90
min

(measured at 1 atm and 298.15 K) and a velocity of 
m

67.1
s

enters a 

proton-exchange membrane fuel cell stack through a centrifugal fan. The air is entering the fan at a 

pressure of 1.009 bar and a temperature of 100°F. What is the discharge pressure of the air if the fan 

has a brake power of 2.12 kW and an efficiency of 70%?  

Strategy 

This problem can be solved by performing a mechanical energy balance on the system, and using the 

definition of brake power of a centrifugal fan. 

Solution 

The mechanical-energy balance for this problem (
1 2

z z= ,
in

0υ = , F 0=∑ ) is given by: 

 
( )

2

out1 2

S

P P
W

2

υ−
= −

ρ
 

 WS = Work performed by the centrifugal fan 
J

kg

 
 
 

 

 P1 = Pressure of air at the suction point (Pa) 

 P2 = Pressure of air at the discharge point (Pa) 

 ρ = Average density of the air 
3

kg

m

 
 
 

 

 
out

υ = Velocity of air at the discharge point 
m

s

 
 
 

 

Before being able to calculate the discharge pressure from this equation, we need to calculate the 

velocity of air in the outlet, the average density and the work performed by the fan on the fluid.  

The density of the air entering the fan is calculated using the ideal gas law and the properties of an 

ideal gas at standard conditions. In the following calculation, the sub-index 1 represents the 

conditions of the air at the inlet of the fan. 

 air std 1

31

1 stdstd

kg air
___________M T P ___________  K 1.009 barkmol

ˆ mT P 311.15 K ___________  barV
___________

kmol

     
ρ = =            
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31

kg
___________

m
ρ =  

The density of the air leaving through the fan can be determined using the pressure ratio between the 

suction and discharge points. After substituting the known pressure and density we get: 

 2 2

32 1

1

P Pkg 1 bar
___________

P m 1.009 bar ___________ Pa

    
ρ = ρ =         

 

 ( )
2 2

________________ Pρ =  

Now we can obtain the average density of the air as a function of the discharge pressure P2: 

 
( )3 2

1 2

kg
_________ ________________ P

m

2 2

+ρ + ρ
ρ = =  

 ( )
3 2

kg
_______ ____________ P

m

 
ρ = + 
 

 

Substituting this expression into the mechanical-energy balance equation: 

 
( )

( )
2

out1 2

S

2

P P
W

_______ ____________ P 2

υ−
= −

+
 

Now we need to calculate the left hand side of this equation. Equation 3.3-2 of Geankoplis defines 

the brake power of a centrifugal fan as follows: 

 S
W m

brake kW
1000

−
=

η

�

 

where: 

 m� = Mass flow rate of fluid 
kg

s

 
 
 

 

 η= Efficiency of the fan 

We can solve for the work 
S

W  performed by the fan: 

S

________
W _____________

________

 
=  

 
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The value of the mass flow rate m� can be obtained from the properties of an ideal gas at standard 

conditions. Thus, 

 std
TV ________

m
ˆ ________V

 
=  

 

�

�  

The sub-index 0 of the temperature indicates the temperature at which the air flow rate was 

measured. Substituting the corresponding numeric values into this equation yields: 

 

3

3

m 1 min  kg
________ _________

273.15 Kmin 60 s kmol
m

__________  Km
__________

kmol

  
      =  

   
 
 

�  

 
 kg

m _____________
s

=�  

Entering this value and the brake power of the fan into the equation for the work WS: 

 
S

1000(0.70) J
W 2.12 kW _____________

kg kg
_____________

s

 
 

= − = − 
 
 

 

Now, after substituting the calculated values, the energy balance equation is given by: 

 
( )

25

2

2

1 10  Pa m
1.009 bar P 67.1

J 1 bar s
_____________

kg _______ ____________ P 2

×   −   
   − = −

+
 

 
( )

5

2

2

1.009 10  Pa PJ
_______________

kg _______ ____________ P

× −
=

+
 

This equation can be solved for P2 as shown in the following steps: 

 ( ) 5

2 2

J
____________ _______ ____________ P 1.009 10  Pa P

kg
+ = × −    

 ( ) 5

2 2
_______________ ____________ P 1.009 10  Pa P+ = × −  

 ( )5

2 2
____________ P P 1.009 10 13386.4+ = × +  

 
2

____________
P

0.8673
=  

 
2

__________
P ________________  Pa 1.318 bar

__________

 
= = 

 
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Example 3.3-4: Compression of Methane 

A compressor in a steam-methane reforming process for hydrogen production is compressing  

natural gas at room temperature from a pressure of 1 atm to 21.8 atm before entering the reforming 

reactor. What percent of power is saved when operating the compressor at isothermal conditions if 

compared to adiabatic compression? 

Strategy 

The equation for calculating the brake power of a compressor allows us to compare both adiabatic 

and isothermal compression processes. 

Solution 

The equation for calculating the power required by the compressor is shown below: 

 S
W m

brake kW
−

=
η

�

 

The value of the work WS in this equation is in kJ. The values of the mass flow rate m� and the 

efficiency η  are not given in the problem statement. However, for calculating the amount of power 

saved, the values of m�  and η  are not required, as it will be shown in the following steps. We need 

to calculate the work performed by the compressor at both adiabatic and isothermal conditions. 

For adiabatic compression, the work WS is given by: 

 1 2

S,adiabatic

1

1

RT P
W 1

1 M P

−γ
γ 

 γ  − = −   γ −    

 

The parameter γ  represents the heat capacity ratio. For methane, a value of 1.31γ = is given in 

Geankoplis. Hence, the work for adiabatic compression is calculated as follows: 

 

( )
S,adiabatic

_____________
_____________

kJ
_____________ 298.15 K

_____________ 21.8 atmkmol KW 1
kg_____________ 1 atm

______
kmol

 
     ⋅  − = −    
      

 
 

S,adiabatic

kJ
W 702.9

kg
− =  
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For isothermal operation, the work WS is calculated using the following equation: 

2

S, isothermal

1

P_______________
W log

M P
− =  

Substituting the pressure ratio into this equation and the temperature of methane before entering the 

compressor yields: 

 
S, isothermal

kJ
W _____________

kg
− =  

The percent of power saved can be calculated dividing the difference in power between adiabatic 

and isothermal compression by the power required for adiabatic compression. Thus, 

 
( ) ( )

( )
adiabatic isothermal

adiabatic

brake kW brake kW
Power saved (%) 100

brake kW

−
= ×  

Substituting the equations for the power required by the compressor and the work values in this 

equation, we get: 

 

m

Power saved (%)
η

=

�

( )S,adiabatic S,isothermal
W W

m

 − − −
 

η

�

( )S,adiabatic

100

W

×

−

 

 

kJ kJ
_____________ _____________

kg kg
Power saved (%) 100

kJ
_____________

kg

 
− 

 = ×
 
 
 

 

 Power saved _____________=  
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Example 3.8-3: Laminar Flow in a Circular Tube 

An aqueous solution of 40 % methanol is flowing from the fuel reservoir to a stack of direct-

methanol fuel cells in a mobile phone through a pipe with an inner diameter of 3 mm and a length of 

2 cm. Use the equation derived in Geankoplis for laminar flow in a circular tube to determine the 

pressure drop along the pipe if the maximum Reynolds number for methanol in the pipe is 1850. 

Strategy 

We can use the Hagen-Poiseuille equation to calculate the pressure drop between the methanol 

reservoir and the fuel cell stack. 

Solution 

The Hagen-Poiseuille equation is derived in Geankoplis for laminar flow in a circular tube, shown 

below: 

 av

21 2

32 L
P P

D

µυ
− =  

The viscosity of the methanol solution at 25 ºC can be obtained from Figure A.3-4 to be: 

 
kg

_________________
m s

µ =
⋅

  

The only parameter we need to calculate before being able to determine the pressure drop is the 

average velocity. We can obtain the ratio of the average velocity to the maximum velocity from 

Figure 2.10-2 of Geankoplis at the Reynolds number of 1850. From this figure, it can be seen that 

for laminar flow the ratio of the velocities remains constant and equal to __________. Thus, 

 
av max

________υ = υ  

From the definition of Reynolds number we can solve for the maximum velocity to yield: 

 
max

_____________

__________
υ =  

The density of an aqueous solution of 40 % methanol can be obtained from Table 2-109 of Perry’s 

Chemical Engineers’ Handbook, 7
th

 Edition to be: 

 
3@20ºC

kg
934.5

m
ρ =  
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Substituting the corresponding quantities into the definition of Reynolds number, we get: 

 

( )
max

3

3

kg
1850 _______________

mm s
_____________

kg s
3 10 m _____________

m

−

 
 

⋅ υ = =
 

×  
 

 

With this value, we can determine the average velocity from the data read from Figure 2.10-2: 

 
av

m m
_____________ _____________ 0.6

s s

 
υ = = 

 
 

Finally, after entering this velocity and the rest of the values into the Hagen-Poiseuille equation we 

can determine the pressure drop as shown in the following steps: 

 

( )

( )
21 2 3

kg m
32 _____________ 0.6 _____________ m

m s s
P P

3 10 m−

  
  

⋅  − =
×

 

 
1 2

P P ______  Pa− =  
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Example 3.11-1: Dimensionless Groups 

Using dimensionless numbers determine which of the following forces is the most dominant for the 

flow conditions in a polymer-electrolyte membrane fuel cell and direct-methanol fuel cell: 

 -Inertia Force 

 -Gravity Force 

 -Pressure Force 

 -Viscous Force 

 

The flow conditions in both fuel cells are given in the following set of data. The direct-methanol fuel 

cell is using an aqueous solution of 40 % methanol as fuel. 

Polymer-Electrolyte Membrane Fuel Cell 

 Pressure: 2.5 atm 

 Temperature: 80 ºC 

 Velocity of hydrogen: 
m

15
s

 

 Hydraulic diameter  

 of the channel: 31 10 m−×  

 

 

Direct Methanol Fuel Cell 

 Pressure: 1 atm 

 Temperature: 25 ºC 

 Velocity of methanol: 
m

0.49
s

 

Density:
3

kg
931.5

m
 

Hydraulic diameter  

 of the channel: 48.57 10 m−×

Strategy 

The Froude, Euler and Reynolds numbers establish a relation between the forces given in the 

problem statement and hence can be used for determining the most dominant force for a specified 

flow conditions. 

Solution 

The definitions of the dimensionless groups that will be used for solving this problem are given in 

the following equations. 
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2

Fr

inertia force
N

gravity force gL

υ
= =  

 
Eu

pressure force ______
N

inertia force ______
= =  

Re

inertia force L
N

viscous force

υρ
= =

µ
 

In these equations the parameter L represents the characteristic length. For this problem, the 

characteristic length will be given by the hydraulic diameter of the channel DH. Thus, 

2

Fr

H

inertia force
N

gravity force gD

υ
= =  

 
Eu

pressure force ______
N

inertia force ______
= =  

Re

inertia force _________
N

viscous force _________
= =  

For comparison of the forces involved in these dimensionless numbers, we will use the reciprocal of 

the Euler number. By doing this, we can compare the three numbers using the inertia force as 

reference. Therefore, 

 

Eu

1 inertia force _______

N  pressure force _____
= =  

The viscosity of the methanol solution at room temperature is obtained from Appendix A.3 to be: 

 
kg

_______________
m s

µ =
⋅

 

For hydrogen at a temperature of 80 ºC, the density and viscosity obtained from Table 2-223 of 

Perry’s Chemical Engineers’ Handbook, 8
th

 Edition and are shown below: 

 
6 kg

9.9982 10
m s

−µ = ×
⋅

 

 
3

kg
0.178

m
ρ =  

Now we can proceed to calculate the dimensionless numbers for the flow conditions in both types of 

fuel cell. For the polymer-electrolyte membrane, we can substitute the given parameters into the 

equations for Froude, Euler and Reynolds as shown in the following steps: 
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( )

2

2

Fr

H
2

m
_______

s
N

mgD
9.80665 ___________ m

s

 
 υ  = =

 
 
 

 

Fr
N ___________=  

 

2

3

Eu

kg m
________ ________

1 m s

101325 PaN
2.5 atm

1 atm

 
 
 =

 
 
 

 

Eu

1
________________

N
=  

( ) 3

Re

m kg
___________ m ____ 0.178

s m
N

kg
_______________

m s

  
  
  =

⋅

 

Re
N ____________=  

Conclusion: 

 

 

 

Repeating a similar procedure for the direct-methanol fuel cell, we find the following values for the 

dimensionless numbers: 

( )

2

2

Fr

H
2

m
________

s
N

mgD
________ ______________ m

s

 
 υ  = =

 
 
 

 

Fr
N ________=  
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2

3

Eu

kg m
________ ________

1 m s

N _____________

 
 
 =  

Eu

1
________________

N
=  

( ) 3

Re

m kg
______________ m ________ ________

s m
N

kg
______________

m s

  
  
  =

⋅

 

Re
N ________=  

Conclusion: 

 

 


