CACHE Modules on Energy in the Curriculum

Fuel Cells

Module Title: Microscopic Energy Balance in Fuel Cells

Module Author: Jason Keith

Author Affiliation: Michigan Technological University

Course: Transport Phenomena (Heat Transfer)

Text Reference:  Bird, Stewart, and Lightfoot (2nd edition) section 10.2
Welty, Wicks, Wilson, and Rorrer (4th edition) section 17.2

Concepts: Solving differential equations to obtain the temperature profile
Problem Motivation:

Fuel cells are a promising alternative energy technology. One type of fuel cell, a proton exchange membrane fuel cell reacts hydrogen and oxygen together to produce electricity. Fundamental to the design of fuel cells is an understanding of heat transfer mechanisms within fuel cells. Heat removal from fuel cells is critical to their scaleup for large power applications.
Consider the schematic of a compressed hydrogen tank feeding a proton exchange membrane fuel cell, as seen in the figure below. The electricity generated by the fuel cell is used here to power a laptop computer.  In this module we will solve microscopic equations to determine the temperature profile within one cell of a fuel cell.

[image: image1]
Example Problem Statement: In this example we will apply principles of microscopic energy balances to the design of a fuel cell system. For simplicity, we will consider the rectangular geometry shown below, which describes flow over and heat conduction through a solid plate, with a heat source (due to reaction).

[image: image2]
The governing equation describing the thermal energy conservation equation is given by:
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Note that in equation 1 there is a uniform heat generation rate q within the solid. Equation 1 is subject to the boundary conditions:
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and
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It is noted that equation 2 condition can be derived from an energy balance at the gas/solid interface and that equation 3 is due to the insulated boundary.

The following parameters are available: q = 48 W/cm3, L = 0.5 cm, T∞ = 293 K, k = 0.20 W/cm-K.

Your tasks are the following:

1) Integrate the equation to determine T as a function of x. 
2) Determine the value of the heat transfer coefficient h (in units of W/cm2-K) needed to keep the maximum temperature in the solid below 358 K. 
3) Plot the temperature distribution T as a function of the spatial coordinate x under the conditions of part 2.
Example Problem Solution:

We begin by doing some mathematical manipulation and then solve the ordinary differential equation of equation 1. For more information, please consult a differential equations text.

Part 1)

Step 1) Manipulation. We divide both sides of equation 1 by k and write the second derivative as the derivative of the first derivative to obtain:
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Step 2) Integration. We can then multiply both sides by dx, and integrate to obtain:
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where c is an integration constant. 
Step 3) Boundary condition. Applying the no-flux boundary condition at x = L we can solve to show that:
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We also note that at x = 0 the derivative 
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. This will be used later in the other boundary condition.

Step 4) Another integration. Since the derivative dT/dx is already isolated, we can integrate equation 5 to solve for the temperature distribution:
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where d is an integration constant. We note that at x = 0, T = d.

Step 5) Other boundary condition. Applying the mixed boundary condition at x = 0 we can show that  
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 can be manipulated to give:
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and upon solving for 
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 we can write down the temperature distribution as:
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Part 2)
Step 1) Manipulation. We first note that the maximum temperature Tmax will occur at the insulated boundary, where x = L. Performing this substitution into equation 9 gives:  
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Step 2) Algebra. Solving equation 10 for h we obtain:



[image: image17.wmf]k

qL

T

T

qL

h

2

2

max

-

-

=

¥









(11)
Step 3) Calculation. We can now substitute the known parameters to determine the value of the heat transfer coefficient. Equation 11 becomes:
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Part 3)
The following is a plot of equation 9, showing T as a function of x. Note that the shape of the graph is parabolic. This makes sense since the second derivative is equal to a constant. The slope of the graph at x = L is zero as it is expected to be for an insulated boundary.
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Home Problem Statement: In this example we will apply principles of microscopic energy balances to the design of a fuel cell system. For simplicity, we will consider the rectangular geometry shown below:


[image: image20]
Let us assume a nonuniform source, with more reaction near the insulated boundary, such that equation 1 of the example problem can be modified as:
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Equation 13 is subject to the boundary conditions
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and
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The following parameters are available: q = 100 W/cm4, L = 0.5 cm, T∞ = 293 K, k = 0.20 W/cmK, and h = 1 W/cm2K.

Your tasks are the following:

1) Integrate the equation to determine T as a function of x. 

2) Determine the maximum temperature in the solid.  

3) Plot the temperature distribution T as a function of the spatial coordinate x  
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